

This question paper contains 3 printed pages.

www.FirstRanker.com

: 6310

F-5

Unique Paper Code

Sl. No. of Ques. Paper

: 2341504

Name of Paper

: Mathematical Physics - II

Name of Course

: B. Tech. (Computer Science) (FYUP Scheme)

Semester

: V

Duration

: 3 hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Do five questions in all. Question No. 1 is compulsory.

Do any five questions:

(a) Determine the order, degree and linearity of the differential equation:

$$\left(\frac{d^2y}{dx^2}\right)^4 + \frac{dy}{dx} + 4y = x$$

(b) What is Wronskian? Calculate the value of wronskian for:

$$x''$$
 and $x''(\ln x)$

(c) Prove the following property of Poisson Bracket:

$$[uv, w] = [u, w]v + u[v, w]$$

(d) Find the extreme points of the function:

$$f(x, y) = y^2 + 4xy + 3x^2 + x^3$$

(e) Solve:

$$\frac{dy}{dx} + \frac{n}{x}y = \frac{a}{x^n}$$

- (f) Define generalised momenta for n-particle system, and find its time derivative.
- (g) Form the differential equation whose only solutions are:

(h) Find the extremal of the integral :

$$\int_{0}^{\pi} (2y \sin x - y'^{2}) dx, \text{ here } y' = \frac{dy}{dx}.$$
 (5 × 3 = 15)

Solve the following differential equalibries

www.FirstRanker.com

(a)
$$\frac{dy}{dx} = y \tan x - y^2 \sec x \tag{6}$$

(b)
$$\frac{dy}{dx} = \frac{y - x + 1}{y + x + 5}$$
 (9)

Solve the following differential equations: 3.

(a)
$$\frac{d^2y}{dx^2} - y = x \cos x \tag{6}$$

(b)
$$x^2 \frac{d^2y}{dx^2} + 3x \frac{dy}{dx} + y = \frac{(\ln x)^2}{x}$$
 (9)

Solve the following differential equation (a) 4.

$$(x^4 + y^4)dx - xy^3dy = 0 (6)$$

Using the method of variation of parameters, solve (b)

$$(D^2 + 9)y = x \sin 3x \; ; \; D = \frac{d}{dx}$$
 (9)

Using the method of undetermined coefficients, solve 5. (a)

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = e^z + x \tag{6}$$

Solve the coupled differential equations: (b)

$$\frac{dx}{dt} + 2x = \frac{dy}{dt} + 10\cos t$$

$$\frac{dy}{dt} \div 2y = 4e^{-2t} - \frac{dx}{dt} \tag{9}$$

- Find the equation of the shortest path between two points on the sur-(a) face of sphere of radius a.
 - Using Lagrange's method of undetermined multiplier, find the max-(b) imum value of $u = x^p y^q z'$ when the variables x, y, z are subjected (9)to the condition ax + by + cz = p + q + r.

7. (a) Find the Lagwwy. FirstRanker.com Hamilton www.FirstRanker.com

$$H = \frac{p_x^2}{4a} + \frac{p_y^2}{4b} + k \times y \tag{6}$$

(b) Using Hamilton's equations of motion and the expression

$$L(q, \dot{q}) = p \dot{q} - H(q, p)$$

prove that : $p = \frac{\partial L}{\partial \dot{q}}$ and $\dot{p} = \frac{\partial L}{\partial q}$.

- 8. (a) Show that
 - (i) [q, H] = q,

(ii)
$$[p_j, H] = \dot{p}_j$$
, (6)

here, H denotes Hamiltonian and $1 \le j \le n$.

(b) Write the Lagrangian of the system of two masses 2m and m, shown below in Fig. (1). In this figure, y₁ and y₂ are the displacements of two masses from their equilibrium positions. Hence obtain the equations of motion of these two masses.

(9)