|                         |                        | Roll No.                        |                     |                |              |
|-------------------------|------------------------|---------------------------------|---------------------|----------------|--------------|
| S. No. of Question Pape | т : 1532-А             |                                 |                     |                |              |
| Unique Paper Code       | : 2343703              |                                 |                     | F-7            |              |
| Name of the Paper       | : CS703 Principl       | es of Communica                 | tion Engin          | eering         |              |
| Name of the Course      | : B.Tech. in Com       | puter Science —                 | Allied Cou          | ırse           |              |
| Duration: 3 Hours       |                        |                                 |                     | Maximu         | m Marks: 75  |
| (Write your R           | oll No. on the top im  | mediately on recei              | pt of this q        | nuestion paper | e)           |
| There                   | are two parts of the   | question paper                  | Part I and          | Part II.       |              |
| state of the same       | Part I has one que     | stion which is co               | mpulsory.           |                |              |
| F                       | rom Part II attempt    | any four out of s               | ix question         | ńs.            |              |
|                         | (0)                    | Part I                          |                     |                |              |
|                         | Question N             | o. 1 is compulsor               | <b>y</b> la ei Semb | rande (v)      |              |
| 1. (a) Fill in the bl   | anks:                  | The Orline Control of the State | Tenso, Colonia      |                | 15×1         |
| (i) Elem                | ents of communication  | on system are                   |                     | 900            |              |
| (ii) Math               | ematically in the time | e domain and free               | quency don          | nain Sin wav   | e signal are |
|                         | ented as               |                                 |                     |                |              |
|                         |                        |                                 |                     |                | DTO          |



# www.FirstRanker.com

| (iii)  | Steps involves in conversion of analog signal to digital signal are                 |
|--------|-------------------------------------------------------------------------------------|
| (iv)   | Carrier recovery circuit is needed at the recovery produce a coherent local carrier |
|        | called effect.                                                                      |
| (v)    | Delay distortion is not important in but important                                  |
|        | in                                                                                  |
| (vi)   | For communication most important signals is/are (Analog or Digital or               |
| 100    | Both)                                                                               |
| (vii)  | Input function $x(t)$ is said to be transmitted without distortion if the output    |
|        | signal y(t) is defined as                                                           |
| (viii) | Let the bandwidth of signal is B, sampling rate needed for the same                 |
|        | is                                                                                  |
| (ix)   | We need to compute noise is db; what will be the formula                            |
| (x)    | Envelope is the original signal; show it graphically in pictorial form              |
| (xi)   | In communication system the noise analysis is based on an idealized form of noise   |
|        | is called noise.                                                                    |
| (xii)  | In Amplitude Modulation (AM), let the carrier voltage and modulating                |
|        | voltage are $V_c$ and $V_m$ , respectively, be represented by                       |
|        | and                                                                                 |

# www.FirstRanker.com

|      | (XIII)           | In the standard method of evaluating the modulation index when calcula           | ting from  |
|------|------------------|----------------------------------------------------------------------------------|------------|
|      |                  | a waveform such as my be seen on an oscilloscope, i.e. when both ca              | arrier and |
| i di | e de la companie | the modulating voltages are known, equation for the same is                      |            |
|      | (xiv)            | Mathematical representation (PM) of unmodulated carrier signal is e              | xpressed   |
|      | i i              | as                                                                               |            |
|      |                  |                                                                                  |            |
|      | (xv)             | A transmission of line is said to be lossless if R = G =                         |            |
| (b)  | (i)              | Explain the need of modulation in communication system.                          | 2          |
|      | (ii)             | Discuss the type, causes and effects of the various form of noise which          | may be     |
|      |                  | created within a receiver or an amplifier.                                       | 3          |
| (c)  | (i)              | Draw block diagram of Amplitude Shift Keying and explain in brief.               | 2          |
|      | (ii)             | Explain Balanced Modulator, explain it's working.                                | 3          |
| (d)  | (i)              | Explain Doubling Stub Matching in brief.                                         | 2          |
|      | (ii)             | The characteristic for Impedance $Z_o = R_o + jX_o$ , write expression for $C_o$ | General,   |
|      |                  | Lossless and Distortionless cases.                                               | 3          |
| (e)  | (i)              | Power spectrum density of signal voltage is 100 volts and of noise is 1          | 0 volts,   |
|      |                  | compute the noise figure for receiver in terms of dB.                            | 3          |
|      | (ii)             | Explain any two high frequency transmission lines.                               | 2          |
|      |                  | At the set time things could not proved upod to be here.                         | P.T.O.     |

(v)

## www.FirstRanker.com

### www.FirstRanker.com

1532-A

### Part II

Attempt any four questions from this part. All questions carry equal marks.

Draw block diagram of a communication system, mention the elements of a communication (a) system and describe their functionality. What do you understand by non-linear distortions? Explain it mathematically as well (b) as with the diagram which shows the non-linearity. Explain amplitude modulation, theoretically as well as mathematically and define modulation index of AM wave. 5 Explain transmission line parameters, equation, with equivalent circuit model of a differential length Delta (z) of two-conductor transmission line. An audio signal given as "15 sin  $2\pi(1500t)$ " amplitude modulates a carrier given as (a) "60 sin 2π(100000t)" determine the following: Note: You My assume signals for (i, ii & iii); use above signals for (iv and v). Sketch the audio signal. (i) (ii) Sketch the carrier signal. (iii) Construct the modulated signal. Determine the modulation index and percent modulation. (iv)

What is the frequency of the audio signal and the carrier?

### www.FirstRanker.com

|     | ( 5 ) 1532-A                                                                                   |
|-----|------------------------------------------------------------------------------------------------|
| (b) | A bandwidth of 20 MHz is to be considered for the transmission of AM signals. If the           |
|     | highest audio frequencies used to modulate the carriers and not to exceed 3 kHz, how           |
| *   | may stations could broadcast within this band simultaneously without interfering with one      |
|     | another ?                                                                                      |
| (a) | Explain Frequency Modulation mathematically and define the advantages and disadvantages        |
|     | of Frequency Modulation over Amplitude Modulation.                                             |
| (b) | Explain the concept of Angular Modulation mathematically with instantaneous angular            |
|     | velocity, define the relationship between Phase Modulation (PM) and Frequency                  |
|     | Modulation. 5                                                                                  |
| (a) | Consider a transmission line of length L, explain mathematical expression to compute           |
|     | impedance, standing wave ratio (SWR) and Power ? 5                                             |
| (b) | What are the different transmission line chats? Explain smith chart in detail. 5               |
| (a) | Explain mathematically the noise in AM and Angle Modulation system. What are the               |
|     | effects in small noise and large noise ?                                                       |
| (b) | What are the circuit elements? Use of transmission line as circuit elements, why? Conventional |

1532-A

)

circuit element do not behave as expected at high frequency.

100