

B. Toch.	TIN-	Samo,	121
www.FirstRa			1

•
This question paper contains 4+1 printed pages]
Roll No.
S. No. of Question Paper : 1568
Unique Paper Code : 2341303 F-3
Name of the Paper : Discrete Structures
Name of the Course : B.Tech. in Computer Science
Semester : III
Duration: 3 Hours Maximum Marks: 75
(Write your Roll No. on the top immediately on receipt of this question paper.)
Section A is compulsory.
Do any four questions from Section B.
Section A
(a) A collection of 10 electric bulbs contains 3 defective ones :
(i) In how many ways can a sample of four bulbs be selected?
(ii) In how many ways can a sample of four bulbs be selected which contains two
good bulbs and 2 defective ones ?
(b) Suppose $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$ then show that $(f_1(x) + f_2(x))$ is
$O(\max(g_1(x), g_2(x))).$ 3
(c) Evaluate the sum:

 $\sum_{k=1}^{\infty} k^2$

P.T.O.

www.FirstRanker.com

1568 Show that : (d) 2 $\bar{p} \rightarrow (q \rightarrow r)$ and $q \rightarrow (p \lor r)$ are logically equivalent. Determine the discrete numeric function of the generating function : $A(Z) = Z^2/(4 - 4Z + Z^2).$ Prove that every bipartite graph is 2-colorable. Using master theorem, find the solution to the recurrence : $4T(n/2) + n^2 = T(n).$ Consider a set A = $\{2, 7, 14, 28, 56, 84\}$ and the relation $a \le b$ if and only if a (h) divides b. Give the Hasse diagram for the Partial order set (A, ≤). How many edges are there in an undirected graph with two vertices of degree 7, four (i)vertices of degree 5, and four vertices of degree 6? Show that a full m-ary balanced tree of height h has more than mh-1 leaves. (j)Let |A| = n and |B| = m where m > n. Give the number of one-to-one functions, f : A → B that can be defined ? Show that for a graph to be planar it should at least one vertex of degree 5 or (l)(m) Write the contrapositive and inverse of the following statements: 2 If you try hard, then you will win.

www.FirstRanker.com

(3) 1568

Section B

- (a) Find the number of integers between 1 and 250 that are divisible by any of the integers
 3, 5 and 7.
 - (b) Let X = {1, 2, 3, 4, 5, 6}, and define a relation R on X as R = {(1, 2), (2, 1),
 (2, 3), (3, 4), (4, 5), (5, 6)}. Find the reflexive and transitive closure of R.
 - (c) Prove that $n^3 n$ is divisible by 3 for any integer $n \ge 0$.
- 3. (a) Let 'a' be a numeric function such that:

$$a_r = \begin{pmatrix} 2 & 0 \le r \le 3 \\ 2^{-r} + 5 & r \ge 4 \end{pmatrix}$$

- (i) Determine Δa
- (ii) ∇a.
- (b) Find the total solution of the recurrence relation :

 $a_n + 4a_{n-1} = 7$, where $a_0 = 3$.

the free days to be a set offered

(c) How many students must be in a class to guarantee that at least two students receive the same score on the final exam, if the exam is graded on a scale from 0 to 100 points?

and admission or inflired and appropriate that the

P.T.O.

		(4)	156
4.	(a)	Draw the graph K6 and answer the following questions:	1+
		(i) What is the degree of each vertex ?	
		(ii) Is K ₆ planar ?	
	(b)	A connected planar graph G has 10 vertices each of degree 3. Into how many re	gion
		does a representation of this planar graph split the plane ?	
	(c)	How many leaves does a regular (full) 3-ary tree with 100 vertices have ?	2
5.	(a)	Draw graphs each having six vertices such that :	4
		(i) Graph is Hamiltonian but not Eulerian	
		(ii) Graph is Eulerian but not Hamiltonian.	
	(b)	Show that the sum of degree of all vertices in G is twice the number of o	dges
		in G.	3
	(c)	What is the condition for $K_{m,n}$ to have an Euler path or circuit ? Justify	your
		answer.	3
6.	(a)	Use the insertion sort algorithm to sort the list 2, 14, 9, 13, 12.	3
	(b)	Determine whether each of the functions 2^{n+1} and 2^{2n} is $O(2^n)$.	4
The state of	(c)	Using substitution method, prove that $T(n)$ is $O(n \lg n)$ given that:	3

www.FirstRanker.com

(5)

1568

- (a) Show that (p → q) ∧ (r → q) ⇔ (p ∨ r) → q are logically equivalent using the laws of logical equivalences.
- (b) Show that :

$$(p \wedge q) \to (p \vee q)$$

is a tautology with the help of truth table.

2

(c) Show that the premises "It is not sunny this afternoon and it is colder than yesterday;" "We will go swimming only if it sunny;" "If we do not go swimming, then we will take a canoe trip"; and "If we take a canoe trip, then we will be home by sunset" lead to the conclusion—"We will be home by sunset".

1568