

B. Tock - M. Same, Ky.

This question	paper	contains	4+1	printed	pages	

Roll No.

F-3

S. No. of Question Paper : 1568

Unique Paper Code : 2341303

Name of the Paper : Discrete Structures

Name of the Course : B.Tech. in Computer Science

Semester : III

Duration: 3 Hours Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Section A is compulsory.

Do any four questions from Section B.

Section A

- 1. (a) A collection of 10 electric bulbs contains 3 defective ones:
 - (i) In how many ways can a sample of four bulbs be selected?
 - (ii) In how many ways can a sample of four bulbs be selected which contains two good bulbs and 2 defective ones?
 - (b) Suppose $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$ then show that $(f_1(x) + f_2(x))$ is $O(\max(g_1(x), g_2(x)))$.
 - (c) Evaluate the sum:

$$\frac{\sum_{k=1}^{\infty} k^2}{2^k}$$

P.T.O.

www.FirstRanker.com

2 1568 Show that: (d) 2 $\overline{p} \to (q \to r)$ and $q \to (p \lor r)$ are logically equivalent. Determine the discrete numeric function of the generating function: (e) $A(Z) = Z^2/(4 - 4Z + Z^2)$ Prove that every bipartite graph is 2-colorable. Using master theorem, find the solution to the recurrence: (g) $4T(n/2) + n^2 = T(n)$. Consider a set A = $\{2, 7, 14, 28, 56, 84\}$ and the relation $a \le b$ if and only if a (h) divides b. Give the Hasse diagram for the Partial order set (A, \leq) . How many edges are there in an undirected graph with two vertices of degree 7, four (i) vertices of degree 5, and four vertices of degree 6? Show that a full m-ary balanced tree of height h has more than m^{h-1} leaves. (j)3 Let |A| = n and |B| = m where m > n. Give the number of one-to-one functions, $f: A \rightarrow B$ that can be defined? Show that for a graph to be planar it should at least one vertex of degree 5 or less. Write the contrapositive and inverse of the following statements: If you try hard, then you will win.

1568

Section B

- 2. (a) Find the number of integers between 1 and 250 that are divisible by any of the integers2, 3, 5 and 7.
 - (b) Let X = {1, 2, 3, 4, 5, 6}, and define a relation R on X as R = {(1, 2), (2, 1),
 (2, 3), (3, 4), (4, 5), (5, 6)}. Find the reflexive and transitive closure of R.
 - (c) Prove that $n^3 n$ is divisible by 3 for any integer $n \ge 0$.
- 3. (a) Let 'a' be a numeric function such that:

$$a_r = \begin{pmatrix} 2 & 0 \le r \le 3 \\ 2^{-r} + 5 & r \ge 4 \end{pmatrix}$$

- (i) Determine Δa
- (ii) ∇a .
- (b) Find the total solution of the recurrence relation:

$$a_n + 4a_{n-1} = 7$$
, where $a_0 = 3$.

the same score on the final exam, if the exam is graded on a scale from 0 to 100 points?

P.T.O.

www.FirstRanker.com

		(4)	568
4.	(a)	Draw the graph K_6 and answer the following questions:	1+3
		(i) What is the degree of each vertex?	
		(ii) Is K ₆ planar?	
	(b)	Å connected planar graph G has 10 vertices each of degree 3. Into how many regi	ons
		does a representation of this planar graph split the plane?	4
	(c)	How many leaves does a regular (full) 3-ary tree with 100 vertices have ?	2
5.	(a)	Draw graphs each having six vertices such that:	4
		(i) Graph is Hamiltonian but not Eulerian	
		(ii) Graph is Eulerian but not Hamiltonian.	
	(b)	Show that the sum of degree of all vertices in G is twice the number of edge	ges
		in G.	3
	(c)	What is the condition for $K_{m,n}$ to have an Euler path or circuit? Justify yo	ur
		answer.	3
6.	(a)	Use the insertion sort algorithm to sort the list 2, 14, 9, 13, 12.	3
	(b) .	Determine whether each of the functions 2^{n+1} and 2^{2n} is $O(2^n)$.	4
A/ 3	(c)	Using substitution method, prove that $T(n)$ is $O(n \lg n)$ given that:	3
	-	$T(n) = 2T\left(\frac{n}{n}\right) + n.$	

www.FirstRanker.com

(5)

1568

- (a) Show that $(p \to q) \land (r \to q) \Leftrightarrow (p \lor r) \to q$ are logically equivalent using the laws of logical equivalences.
- (b) Show that:

$$(p \land q) \to (p \lor q)$$

is a tautology with the help of truth table.

2

(c) Show that the premises "It is not sunny this afternoon and it is colder than yesterday;"
"We will go swimming only if it sunny;" "If we do not go swimming, then we will take a canoe trip"; and "If we take a canoe trip, then we will be home by sunset"
lead to the conclusion—"We will be home by sunset".

1568

4

2,000