

Roll No. Total No. of Pages: 03

Total No. of Questions: 09

B. Architecture (2012 & Onwards) (Sem.-3)

STRUCTURE DESIGN-I

Subject Code: BACH-307 M.Code: 70419

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- 1. Attempt SIX questions. Q. No. 1 is COMPULSORY. Attempt any FIVE from the rest.
- 1. a) What do you mean by Bending stress?
 - b) What is difference between column and beam?
 - c) What is difference between gross bearing capacity and net bearing capacity?
 - d) What is difference between short column and slender column?
 - e) What is difference between tensile stress and bending stress?

3300mm
3300mm
3300mm
311 kN/Sq. m
Slab wt + live load
SECTION 1-1

9" THK BRICK WALL HEIGHT OF SLAB 3000MM FROM GROUND LVL.

FIG.1

Design brick foundation for wall W1

Assume bearing capacity of soil for foundation 900mm below natural Ground Level.

1 M-70419 (S17)-805

3. Calculate the base pressure diagram developed in brick retaining wall of following case?

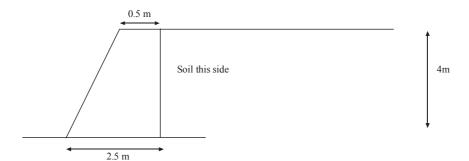


FIG.2

Density of Soil $\gamma = 18 \text{ kn}/\text{m}^3$

Density of brick work = 22 Kn/m^3

Angle of repose $\varphi = 30$ degree.

4. Explain middle third rule? Find base pressure for following diagram.

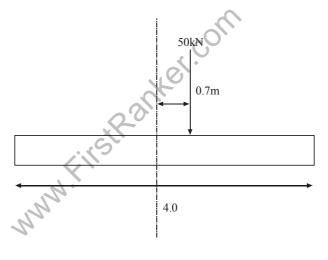


FIG.3

Base resting on elastic pad length is 4m and width is 0.1m (eccentricity of load is 0.7m)

- 5. Design a brick column for compressive load of 100kN and bending moment 10kN-m Assume safe compressive stress of bricks 90kG per square cm.
- 6. Find factor of safety against overturning for figure no.3.

2 | M-70419 (S17)-805

- 7. Explain rankine formula for minimum depth of foundation. What will be the minimum depth of foundation for maximum stress on soil below foundation 90 kN/square meter, assume angle of repose of soil 30 degree?
- 8. Write short note on following:
 - a) Moment of inertia.
 - b) Effective length of column
 - c) Moment of resistance
 - d) Shear stress in beam
- 9. A timber beam, 5m long, section depth 200 and width 200mm is simply supported on edges, find the bending tensile and compression stresses if a UDL of 2kN is applied on it.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

3 | M-70419 (S17)-805