Code: 9D15102

M.Tech I Semester Regular \& Supplementary Examinations February 2016
 ADVANCED MECHANISMS

(Machine Design)
(For students admitted in 2011, 2012, 2013, 2014 \& 2015 only)
Time: 3 hours
Max Marks: 60

Answer any FIVE questions
 All questions carry equal marks

1 (a) Derive the Gruebler's equation of mobility for planar mechanisms.
(b) The off-set slider crank mechanism is required to have a stroke length of 200 mm with connecting rod 150 mm length. Determine the maximum possible length of the crank.

2 (a) State the Bobillier's theorem related to inflection circle.
(b) Explain the analytical and graphical determination of d_{i} (inflection circle) for the given conjugate points O_{m} and O_{f} for which the ray angle is zero i.e. O_{f} is the centre of curvature of the path of O_{m}.

4 Explain the construction of Burmester curve related to guiding a body through four distinct positions.

5 State and explain the Robert's theorem with respect to path generation.
6 Synthesize a four-bar linkage to meet the following specifications:
Driving link: $\omega_{2}=10 \mathrm{rad} / \mathrm{sec} \quad \alpha_{2}=5 \mathrm{rad} / \mathrm{sec}^{2}$
Driving link: $\omega_{3}=2 \mathrm{rad} / \mathrm{sec} \quad \alpha_{3}=15 \mathrm{rad} / \mathrm{sec}^{2}$
Driving link: $\omega_{4}=5 \mathrm{rad} / \mathrm{sec} \quad \alpha_{4}=1 \mathrm{rad} / \mathrm{sec}^{2}$
Assume the minimum length of the link $=100 \mathrm{~mm}$.
7 (a) Explain the D-H parameters of a prismatic-revolute planar arm.
(b) Sketch and explain SCARA industrial robot manipulator.

8 (a) Explain the Jacobian of the three - link arm.
(b) Obtain the singularity of the two - link planar arm.

