M.Tech II Semester Supplementary Examinations January/February 2019
 ADVANCED HEAT \& MASS TRANSFER

(Thermal Sciences \& Energy Systems)
(For students admitted in 2017 only)
Time: 3 hours
Max. Marks: 60
Answer all the questions
Use of heat and mass transfer data handbook allowed.

1 A heating furnace of total surface area $30 \mathrm{~m}^{2}$ and volume $10 \mathrm{~m}^{3}$ is maintained at a temperature of $1000^{\circ} \mathrm{C}$ over its entire volume. The total pressure of the combustion gases is 2 atm , the partial pressure of water vapour is 0.1 atm and that of CO_{2} is 0.3 atm . Calculate the emissivity of the gaseous mixture.

OR

2 A cylinder 1 m long and 5 cm in diameter is placed in an atmosphere at $45^{\circ} \mathrm{C}$. It is provided with 10 longitudinal straight fins of material having $\mathrm{k}=120 \mathrm{~W} / \mathrm{mK}$. The height of 0.76 mm thick fins is 1.27 cm from the cylinder surface. The heat transfer coefficient between cylinder and atmospheric air is $17 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Calculate the rate of heat transfer and the temperature at the end of fins if surface temperature of cylinder is $150^{\circ} \mathrm{C}$.

3 Derive the momentum equation.

OR

4 Explain the analogy between momentum and heat transfer.
5 Explain with a neat sketch the pool boiling curve for water.

OR

6 A refrigerator is designed to cool $250 \mathrm{~kg} / \mathrm{hr}$ of hot liquid of specific heat $3350 \mathrm{~J} / \mathrm{kgK}$ at $120^{\circ} \mathrm{C}$ using a parallel flow arrangement. $1000 \mathrm{~kg} / \mathrm{h}$ of cooling water is available for cooling purposes at a temperature of $10^{\circ} \mathrm{C}$. If the overall heat transfercoefficient is $1160 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ and the surface area of the heat exchanger is $0.25 \mathrm{~m}^{2}$, calculate the Qutlet temperatures of the cooled liquid \& water and also the effectiveness of the heat exchanger.

7 Calculate the steady state temperatures $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{4}$ at the four nodes in the figure given below using the finite difference method.

OR

8 Explain clearly Crank Nicolson and fully implicit schemes.
9 Estimate the rate of evaporation of toluene from the bottom of a deep narrow cylindrical vessel to air at 291.7 K flowing over the top surface of the vessel. The diffusivity of air toluene vapour is $0.826 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$ and the saturated vapour pressure of toluene at the liquid surface in the vessel is 0.026 atm . Take the distance between the liquid toluene surface and the top of the vessel as 1.525 m .

