Total No. of Pages: 3

5386

Register Number: Name of the Candidate:

B.Sc. DEGREE EXAMINATION, May 2015

(COMPUTER SCIENCE)

(FIRST YEAR)

(PART-III)

130/140: SCIENTIFIC COMPUTING

(Common with B.Sc I.T and B.C.A)

Time: Three hours Maximum: 100 marks

Answer any FIVE questions

 $(5 \times 20 = 100)$

- 1. a) Solve for a positive root of x-cos x = 0 by regular falsi method.
 - (10)
 - b) Using Gauss Seidal method, solve the following system. Start with x=1, y=2, z=3 (10)

$$x+3y+52z=173.61$$

$$x-27v+2z=71.31$$

$$41x-2v+3z=65.46$$

2. a) Apply Gauss-Jordan method, to solve the system.

(10)

$$8x-3y+2z=20$$

$$4x+11y-z=33$$

$$6x+3v+12z=35$$

- b) Find the least positive root of the equation $\tan x = x$ to an accuracy of (10) 0.0001 by Newton-Raphson method.
- 3. a) Compute f''(0) and f''(4) from the data.

(10)

X	0	1	2	3	4	
У	1	2.718	7.381	20.086	54.598	

b) Find the value of y at x=21 from the following data.

(10)

X	20	23	26	29	
y	0.3420	0.3907	0.4384	0.4848	

•

5386

(10)

(10)

(10)

4. Find the First, Second and Third derivatives of f(x) at x=1.5 if, (10)

X	1.5	2.0	2.5	3.0	3.5	4.0
F(x)	3.375	7.000	13.625	24.000	38.875	59.000

b) Evaluate

$$\int_{0}^{5} \frac{dx}{4x+5}$$

by Simpson's one-third rule and hence find the value of $log_e 5(n=10)$

5. Using Taylor's series method find y at x=1.1 and 1.2 by solving, (10)

$$\frac{dy}{dx} = x^2 + y^2$$
 given y(1)=2.3

Find an approximate solution of the initial value problem, (10)b)

$$y'=1+y^2$$
, $y(0)=0$

by Picard's method

6. a) Using Euler's method.

ang Euler's method.
Solve
$$\frac{dy}{dx} = 1 + xy$$
 with $y(0) = 2$
A $y(0.1)$, $y(0.2)$ and $y(0.3)$
Appute $y(0.1)$ and $y(0.2)$ by Runge –Kutt

Find y(0.1), y(0.2) and y(0.3)

Compute y(0.1) and y(0.2) by Runge -Kutta 4th order for the b) (10)differential equation.

$$\frac{dy}{dx} = xy + y^2, y(0) = 1$$

7. Classify the equations.

i)
$$U_{xx} + 2u_{xy} + u_{yy} = 0$$

ii)
$$x^2 f_{xx} + (1-y^2) f_{yy} = 0$$

Solve, b) (10)

$$\frac{\partial^2 u}{\partial x^2} - 2\frac{\partial u}{\partial t} = 0$$

Given u(0,t)=0, u(4,t)=0

$$U(x,0)=x(4-x)$$

Assume h=1

Find the values of u up to t=5

3

5386

8. a) Solve the Laplace equation at the interior points of the square region (10) given below:

5 <u>00</u>	10	00	10	00	10	00	50	00
		47		4	8	49)	
0		44	4	45		46		0
0		41		42		43		0
0								0
0 0 0								

b) Compare Trapezoidal rule and Simpson's 1/3 rule for evaluating (5) numerical integration.

MWW.FitstRailker.com