Logarithms

Why logarithms:

We know that $32 = 2^5$. ie., 32 can be represented as a power of 2. But how do we represent 32 as some power of 10?

This is where logarithms comes. 32 when represented a power of 10 is equal to $\log_{10} 32 = 1.5051$. i.e., $32 = 10^{1.5051}$

Properties of Logarithms:

- 1. $\log_a 1 = 0$ because 0 is the power to which a must be raised to obtain 1.
- 2. $\log_a a = 1$ because 1 is the power to which a must be raised to obtain a.
- 3. $\log_a a^N = N$ because N is the power to which a must be raised to obtain a^N
- 4. $a^{\log_a b} = b$ because $\log_a b$ is the power to which a must be raised to obtain b.

 5. $a^{\log_b c} = c^{\log_b a}$ 6. $\log_a b M = \frac{1}{b} \log_a M$ 7. $\log_b M = \frac{\log_a M}{\log_a b}$ 8. $\log_a b = \frac{1}{\log_b a}$ 9. $\log_a b \cdot \log_b c = \log_a c$

$$5 a \log_b c = c \log_b a$$

$$6. \log_{a^b} M = \frac{1}{b} \log_a M$$

$$7. \log_b M = \frac{\log_a M}{\log_a b}$$

8.
$$\log_a b = \frac{1}{\log_1 a}$$

9.
$$\log_a b \cdot \log_b c = \log_a c$$

Laws of logarithm:

- 1. Product rule: $\log_a MN = \log_a M + \log_a N$
- 2. Division rule = $log_a \frac{M}{N} = log_a M log_a N$

Remember:

$$\log_a(b+c) \neq \log_a b + \log_a c$$

Note: When no base is given we generally assume the base as 10. These are called common logarithms When "e" is a base then we call them as natural logarithms.

Characteristic of logarithm:

The characteristic of the logarithm of a number greater than one is one less than the number of digits in it.

Eg: characteristic of 98765 = 4 so total digits in the given number is 5.

We know that log 100 = $log 10^2 = 2 log 10 = 2.00$. As the characteristic of 100 is 2, then total digits in 100 are 3. $\log 10 = \log 10^1 = 1 \log 10 = 1$ So total digits are 2 in 10.

Working Rule to find the number digits in a^b format number:

- 1. Calculate the logarithm (you will get some positive number)
- 2. Adding one to the intezer part will give you the number of digits in that original number

Solved Example 1: (Important model)

How many digits are contained in the number 2^{100}

Sol: $\log 2^{100} = 100 \times \log 2 = 100 \times 0.3010 = 30.10$

Number of digits in 2^{100} are 30 + 1 = 31

To determine the characteristic of the logarithm of a decimal fraction: (Numbers between 0 to 1)

Look at this example:

Find the total zeroes after he decimal point of the expression 26

We know that $2^6 = \frac{1}{64} = 0.015625$

$$\log \frac{1}{64} = -1.806$$

Now when you calculate Antilog of -1.806 using calculator, you will get 0.0156.

But if you want to use antilog tables, you have to follow this procedure.

Now
$$\log \frac{1}{64} = \log \frac{1}{2^6} = \log 2^{-6} = -6 \log 2$$
.

We know that log 2 = 0.301

Now log
$$\frac{1}{64}$$
 = -6 × 0.301 = -1.806.

Important: Now if you look at the antilog table for 80 and 6, you will get wrong answer. Why? Because -1.806 =

$$-1 + (-0.806)$$

But mantissa is always positive.

-1.806 should be written as -2 + (1 - 0.806) = -2 + 0.194

Now when you look at the anti log table 0.194 gives you 1563.

So characteristic is 2.

That is the characteristic of the logarithm of a decimal fraction is <u>one more than than the number of zeroes</u> <u>immediately after the decimal point and is negative.</u>

Working Rule to find the number of zeroes in a decimal number:

- 1. Calculate the logarithm (you will get some negative number)
- 2. Subtract the decimal part from one and increase the integer part by 1 to make mantissa positive
- 3. Number of zeroes of that number = Integer part 1

Solved Example 2: (Important model)

$$\log \left(\frac{1}{2}\right)^{1000} = 1000 \times \log \left(\frac{1}{2}\right) = 1000 \times -0.30102 = -301.02$$

But in logarithms the decimal point should be positive. (By using

$$-301.02 = -301 + -0.02 = -302 + (1 - 0.02) = \overline{302}.98$$

So number of zeroes are 302 - 1 = 301

Solved Example 3:

$$\frac{1}{1 + \log_a bc} + \frac{1}{1 + \log_b ca} + \frac{1}{1 + \log_c ab} =$$
a. 0 b. 3
c. 2 d. 1

Answer: d

Explanation:

$$\frac{1}{1 + \log_{a}bc} + \frac{1}{1 + \log_{b}ca} + \frac{1}{1 + \log_{c}ab} = \frac{1}{\log_{a}a + \log_{a}bc} + \frac{1}{\log_{b}b + \log_{b}ca} + \frac{1}{\log_{c}c + \log_{c}ab} = \frac{1}{\log_{a}abc} + \frac{1}{\log_{b}abc} + \frac{1}{\log_{c}abc} = \frac{1}{\log_{a}abc} + \log_{a}bc + \log_{a}bc = 1$$

 $= \log_{abc} a + \log_{abc} b + \log_{abc} c = \log_{abc} abc = 1$

Solved Example 4:

The value of $(yz)^{\log y - \log z} \times (zx)^{\log y - \log x} \times (xy)^{\log x - \log y}$

a. 2

c. 0

Answer: b

Explanation:

Assume K = $(yz)^{\log y - \log z} \times (zx)^{\log y - \log x} \times (xy)^{\log x - \log y}$

Taking log on both sides

$$\label{eq:logK} \begin{split} &\text{Log K} = \log \left((yz)^{\log y - \log z} \times (zx)^{\log y - \log x} \times (xy)^{\log x - \log y} \right) \\ &= \log (yz)^{\log y - \log z} + \log (zx)^{\log y - \log x} + \log (xy)^{\log x - \log y} \\ &= (\log y - \log z) \log (yz) + (\log z - \log x) \log (zx) + (\log x - \log y) \log (xy) \\ &= (\log y - \log z) (\log y + \log z) + (\log z - \log x) (\log z + \log x) + (\log x - \log y) (\log x + \log y) \\ &= 0 \\ &= 0 \\ \Rightarrow & \text{K} = 1 \end{split}$$

Solved Example 5:

$$(\frac{x+y}{3})$$
 = $\frac{1}{2}$ (logx + logy) then $(\frac{x}{y} + \frac{y}{x})$ is a. 5 b. 7 c. 9

Answer: b

Explanation:

As the L.H.S does not have any log, first we try to remove log from the given equation.

$$\log(\frac{x+y}{3}) = \frac{1}{2}(\log x + \log y)$$

$$\Rightarrow 2\log(\frac{x+y}{3}) = \log xy$$

$$\Rightarrow \log(\frac{x+y}{3})^{2} = \log xy$$

$$\Rightarrow x^{2} + y^{2} + 2xy = 9xy$$

$$\Rightarrow x^{2} + y^{2} = 7xy$$

$$\Rightarrow \frac{x}{y} + \frac{y}{x} = 7$$

Solved Example 6:

The value of $7\log_a \frac{16}{15} + 5\log_a \frac{25}{24} + 3\log_a \frac{81}{80}$ is

a. log_a5

b. log_a3

c. log_a2

d. log_a0

Answer: c

Explanation:

$$7\log_{a}\frac{16}{15} + 5\log_{a}\frac{25}{24} + 3\log_{a}\frac{81}{80} = 7\log_{a}\left[\frac{3^{4}}{3\times5}\right] + 5\log_{a}\left[\frac{5^{2}}{3\times2^{3}}\right] + 3\log_{a}\left[\frac{3^{4}}{5\times2^{4}}\right]$$

 $= 7[4\log_a 2 - \log_a 3 - \log_a 5] + 5[2\log_a 5 - \log_a 3 - 3\log_a 2] + 3[4\log_a 3 - \log_a 5 - 4\log_a 2]$

 $= \log_{2} 2$

Solved Example 7:

If $x = \log_{2a} a$, $y = \log_{3a} 2a$, $z = \log_{4a} 3a$ then (x-2)yz =

a. -1

c. 1

Answer: a

Explanation:

$$(x-2)yz = xyz - 2yz$$

Substituting values from the given values from above,

$$\log_{2a} a. \log_{3a} 2a. \log_{4a} 3a - 2\log_{3a} 2a. \log_{4a} 3a = \log_{4a} a - 2\log_{4a} 2a$$

$$\Rightarrow \log_{4a} a - \log_{4a} (2a)^2 = \log_{4a} [a/(2a)^2]$$
 (Division Rule)

$$\Rightarrow \log_{4a} [1/4a] = \log_{4a} 4a^{-1} = -1$$

Solved Example 8:

If $a = log_4 5$ and $b = log_5 6$ then $log_2 3 = ?$

a. 1-2ab

b. 1+2ab

c. 2ab - 1

d. (a-b) / (a+b)

Answer: c

Explanation:

To solve questions like these, first observe the question asked. The given question contains 2 and 3. If we remove 5 from the given values of a and b, we are left with 4 and 6.

$$ab = \log_4 5.\log_5 6 = \log_4 6 = \frac{1}{2}\log_2 6$$
By product rule, $\log_2 6 = \log_2 (3 \times 2) = \log_2 3 + \log_2 2$

$$\frac{1}{2}(\log_2 3 + \log_2 2) = \frac{1}{2}(\log_2 3 + 1)$$

$$\Rightarrow ab = \frac{1}{2}(\log_2 3 + 1)$$

$$\Rightarrow 2ab = \log_2 3 + 1$$

$$\Rightarrow \log_2 3 = 2ab - 1$$

Solved Example 9:

If
$$a = \log_{105} 7$$
, $b = \log_7 5$ then $\log_{35} 105$ =

a. ab b. (b+1)a c. 1/ab d. 1/a(b+1)

Answer: d

Explanation:

ab =
$$\log_{105} 7 \cdot \log_7 5 = \log_{105} 5$$

Now $\log_{35} 105 = \frac{1}{\log_{105} 35} = \frac{1}{\log_{105} 5 + \log_{105} 7} = \frac{1}{ab + a} = \frac{1}{a(b + 1)}$

AND HOLD REAL COMP.