This question paper contains 4 printed pages.]	
Your Roll No	
1446	A
B.Sc. (Hons.)/I	
MICROBIOLOGY—Paper II	
(Biochemistry and Instrumentation)	
(Admissions of 2004 and onwards)	
Time: 3 Hours Marks: 6	0
(Write your Roll No. on the top immediately	
on receipt of this question paper.)	
Attempt five questions in all, selecting	
at least two questions from each Section.	
Attempt Section Land Section B on separate	
answer books. All questions carry equal marks.	
SECTION-A	
1. (a) Name the following:	
(i) Optically inactive sugar	
(ii) Most basic amino acid	
(iii) An essential fatty acid	
(iv) Non-standard amino acid	
(v) An unusual nitrogenous base present in t-RNA	
(vi) Reagent used for determination of N-terminal of	a
polypeptide. $1 \times 6 =$	6

[P.T.O.

14	146	(2)
	(b)	Draw structure of (any two):
		(i) Hyaluronate
		(ii) Cholesterol
		(iii) Sphingomyelin
		(iv) GTP $3 \times 2 = 6$
2.	Di	fferentiate between (any four):
	(i)	Secondary and Tertiary structure of Protein
	(ii)	Homo and Hetero polysacchaerides &
	(iii)	Coenzymes and Cofactors
	(iv) Saponifiable and Non-saponifiable lipids
	(v)	Isozymes and Multienzyme complex. $3 \times 4 = 12$
3.	(a)	What is steady state approximation? Under what
		conditions is it valid?
	(b)	Which of the following lowers the Tm of duplex DNA
		and how?
	(c)	Which of the following releases more energy on its
		breakdown and why? Phosphoenal pyruvate or Acetyl
		CoA.
	(d)	What is the ratio of proton donor to proton acceptor at
		pH 4, 5 and 6 for an acid with pK of 6?
4.	(a)	What are β -Benzymes? How are they produced? 3
	(b)	RNA is hydrolyzed with alkali treatment while DNA is
		not. Why?
	(c)	Why do phospholipids preedoninate cell membranes? 3

1.

2.

	(3) 1446			
(d)	Which is more stable and why—A right handed or a			
	left handed α -helix of polyglycine? 3			
SECTION-B				
(a)	How are the mitochondria organized to be the power			
	houses of the cell?			
(b)	How would you determine the molecular weight of a			
	protein by electrophoresis? 2			
(c)	Differentiate between the following pairs:			
	(i) Prokaryotic and eukaryotic ibosomes			
	(ii) Primary and secondary tysosomes $2 \times 2 = 4$			
(d)	Define the following terms in context of gel filtration:			
	(i) Exclusion limit			
	(ii) Bed volume			
	(iii) Void volume $1 \times 3 = 3$			
(a)	State the principle of spectrophotometry. What are the			
	applications of this technique. $2 + 2 = 4$			
(b)	Define the following terms giving suitable examples or			
	uses, which is applicable:			
	(i) Fluor			
	(ii) Microsomes			
	(iii) Liposomes			
	(iv) Cation exchanger $1\frac{1}{2} \times 4 = 6$			
(c)	Chloroplasts exhibit a certain degree of functional			
	anatomy Comment			

[P.T.O.

1446 (4)

- 3. (a) Discuss any *two* of the following in relation to cell membrane:
 - (i) Asymmetric distribution of proteins
 - (ii) Mobility of membrane proteins
 - (iii) Effect of sterots on fluidity of membrane.

 $1\frac{1}{2} \times 2 = 3$

- (b) Where in the cell are the following enzymes localized?

 Mention the specific site within the organelle:
 - (i) Succinic acid dehydrogenase
 - (ii) Acid phosphatase
 - (iii) Rubisco
 - (iv) Adenylate kinas
 - (v) Glycosyl transferase
 - (vi) Peptidyl transferase

 $\frac{1}{2} \times 6 = 3$

- (c) Write in brief the principle and applications of any two of the following techniques:
 - (i) Isoelectric focussing
 - (ii) Affinity chromatography
 - (iii) X-ray crystallography

 $2 \times 3 = 6$