Code: 13A01606

B.Tech III Year II Semester (R13) Regular Examinations May/June 2016

FINITE ELEMENT METHODS IN ENGINEERING

(Civil Engineering)

Time: 3 hours Max. Marks: 70

PART – A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) List out advantages of FEM.
 - (b) Define plane stress with a suitable example.
 - (c) Differentiate between global and local axes.
 - (d) What is geometric invariance?
 - (e) What are the properties of stiffness matrix?
 - (f) What is shape function and state their properties?
 - (g) Define Iso-parametric element and state their purpose.
 - (h) What is an Axi symmetric element and state usage?
 - (i) What is static condensation?
 - (j) Write about solution technique for static loads.

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

[UNIT - I]

- 2 (a) Explain the different steps involved in FEM.
 - (b) Find out deflection at centre of a simply supported beam of span length (*l*) subjected to uniformly distributed load throughout its length of intensity w per unit length. Use Rayleigh Ritz method. Take EI is constant.

OR

- 3 (a) Write about stress-strain relationship in matrix form for a plane stress element.
 - (b) If a displacement field is described by $u = (x^2 2y^2 + 6xy)10^{-4}$ and $v = (6x + 3y)10^{-4}$, Determine ε_x , ε_y and γ_{xy} at the point x = 2 and y = 1.

UNIT – II

For the stepped bar shown in the figure below, determine the nodal displacements, element stress and support reactions. Take P = 500 kN, E = 210 GPa, $a_1 = 200 \text{ mm}^2$, $a_2 = 300 \text{ mm}^2$ and $a_3 = 500 \text{ mm}^2$.

- 5 (a) Differentiate between CST and LST elements.
 - (b) Evaluate the shape functions N₁, N₂ and N₃ at the interior point P for the triangular element shown in the figure below.

www.FirstRanker.com

www.FirstRanker.13

Code: 13A01606

UNIT – III

Determine the stiffness matrix, for the plane stress element as shown in figure above. Take E = 200 GPa, and μ = 0.3, thickness of element = 10 mm.

OR

- 7 (a) Determine the shape functions for a constant strain triangular element using area co-ordinates.
 - (b) Derive the strain-displacement matrix (B-matrix) for plane stress analysis of three node triangular element.

UNIT – IV

8 Evaluate the Jacobian matrix at the local co-ordinates ζ , η are (0, 0) for the element shown in the below.

OR

The nodal co-ordinates for an axisymmetric triangular element are given as: $r_1 = 0$, $r_2 = 25$, $r_3 = 30$, $z_1 = 0$, $z_2 = 0$ and $z_3 = 40$ mm respectively. Determine the strain-displacement matrix for the element.

UNIT – V

- 10 (a) What is meant by Newton-Cotes Numerical integration?
 - (b) Write briefly about "Gauss –Quadrature method".

OR

Evaluate the Integral $I = \int_{-1}^{1} (3e^x + x^2 + \frac{1}{(x^2 + 2)})$ using one point and two point Gauss quadrature. Compare this with exact solution
