THERMODYNAMICS

(Mechanical Engineering)
Time: 3 hours
Max. Marks: 70

PART - A

(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks $)$
(a) What is a pure substance?
(b) What is an irreversible process? Give examples.
(c) What is PPM1?
(d) Write difference between non-flow process and steady flow process.
(e) State Kelvin-Planck statement.
(f) What do you mean by irreversibility of the process?
(g) Write Clausius Clapeyron equation and its significance.
(h) Define $\mathrm{p}-\mathrm{v}$-T surface and state its significance.
(i) State Gibb's-Dalton law.
(j) What is an air-standard efficiency and relative efficiency of gas power cycle?

PART - B

(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 (a) Explain briefly Zeroth law of thermodynamics.
(b) A fluid at a pressure of 3 bar and with specific volume of $0.18 \mathrm{~m}^{3} / \mathrm{kg}$, contained in a cylinder behind a piston expands reversibly to a pressure of 0.6 bar according to a law, $p=\left(C / v^{2}\right)$ where C is a constant. Calculate the work done by the fluid on the piston.

OR
3 (a) Compare macroscopic and microscopic approaches in thermodynamic studies.
(b) Explain about point function and path function with examples.

UNIT - II

Write down the general equation for steady flow systems and simplify when applied for the following systems:
(a) Steam turbine.
(b) Steam nozzle.
(c) Centrifugal compressor.
(d) Condenser.

OR
5 At the inlet to a certain nozzle the enthalpy of fluid passing is $2800 \mathrm{~kJ} / \mathrm{kg}$ and velocity is $50 \mathrm{~m} / \mathrm{s}$. At the discharge end the enthalpy is $2600 \mathrm{~kJ} / \mathrm{kg}$. The nozzle is horizontal and there is negligible heat loss from it.
(i) Find the velocity at exit of the nozzle.
(ii) If the inlet area is $900 \mathrm{~cm}^{2}$ and specific volume at inlet is $0.187 \mathrm{~m}^{3} / \mathrm{kg}$, find mass flow rate.
(iii) If the specific volume at the nozzle exit is $0.498 \mathrm{~m}^{3} / \mathrm{kg}$, find the exit area of the nozzle.

Contd. in page 2

6 (a) Explain in detail about Clausius inequality.
(b) 1 kg of air initially at 8 bar pressure and 380 K expands polytropically ($\mathrm{pv}^{1.2}=$ constant) until the pressure is reduced to one-fifth value. Calculate: (i) Final specific volume and temperature. (ii) Change of entropy, work done and heat interaction. (iii) Change in entropy.

OR

7 (a) Prove that entropy is a property of a system.
(b) 5 kg of air at 550 K and 4 bar is enclosed in a closed system.
(i) Determine the availability of the system if the surrounding pressure and temperature are 1 bar and 290 K respectively.
(ii) If the air is cooled at constant pressure to the atmospheric temperature, determine the availability.

UNIT - IV

8 Derive the Maxwell relations.

OR

(a) Explain about compressibility charts.
(b) A pressure cooker contains 1.5 kg of saturated steam at 5 bar. Find the quantity of heat which must be rejected so as to reduce the quality to 60% dry. Determine the pressure and temperature of the steam at the new state.

UNIT - V

10 (a) Explain about adiabatic mixing of perfect gases.
(b) A mixture of hydrogen $\left(\mathrm{H}_{2}\right)$ and oxygen $\left(\mathrm{O}_{2}\right)$ is to be made so that ratio of H_{2} to O_{2} is 2:1 by volume. If the pressure and temperature are 1 bar and $25^{\circ} \mathrm{C}$ respectively, calculate: (i) The mass of O_{2} required. (ii) The volume of the container.

OR

11 (a) Derive expression for air standard efficiency of Otto cycle.
(b) The stroke and cylinder diameter of a compressorignition engine are 250 mm and 150 mm respectively. If the clearance volume is $0.0004 \mathrm{~m}^{3}$ and fuel hinjection takes place at constant pressure for 5 percent of the stroke, determine the efficiency of the engine. Assume engine is working on diesel cycle.

