DIGITAL SIGNAL PROCESSING

(Common to ECE and EIE)
Max. Marks: 70
Time: 3 hours
PART - A
(Compulsory Question)

1
Answer the following: (10 X $02=20$ Marks $)$
(a) Define energy \& power signals.
(b) Consider a finite duration sequence $X(n)=\{2,4,0,3\}$.Resolve the sequence into sum of weighted impulses.
(c) What is FFT?
(d) Draw the direct form-II realization of two people resonator from Goertzel algorithm.
(e) Define signal flow graph.
(f) Draw the direct form-I realization structure of IIR filter.
(g) What is realization.
(h) Distinguish between Recursive \& non recursive realization.
(i) Define the terms decimation and Interpolation.
(j) What are the applications of multi rate signal processing?

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

Explain about classification of discrete time systems briefly.

OR

(a) Discuss about linearity, periodicity properties of DFT.
(b) Perform circular convolution of two sequences given by $X_{1}(n)=\{1,2,3,4\} X_{2}(n)=\{-1,3,-5,7\}$.

UNIT - II

Implement the decimation in time FFT algorithm for $\mathrm{N}=16$.
OR
Write short notes on the following: (i) Split-radix FFT. (ii) Applications of Goertzel algorithm. (iii) Quantization errors. (iv) Radix -4 FFT Algorithm. (v) Chirp-Z transforms.

UNIT - III

(a) Determine the direct form-II and transposed direct form -II for the given system:

$$
\mathrm{Y}(\mathrm{n})=\frac{1}{2} y(n-1)-\frac{1}{4} y(n-2)+x(n)+x(n-1)
$$

(b) An FIR filter is given by the difference equation:

$$
\mathrm{y}(\mathrm{n})=2 \mathrm{x}(\mathrm{n})+\frac{4}{5} x(n-1)+\frac{3}{2} x(n-2)+\frac{2}{3} x(n-3) . \text { Determine its Lattice form. }
$$

UNIT - IV

Design a digital Butterworth filter satisfying the following constrains:

$$
\begin{aligned}
0.707 \leq\left|\mathrm{H}\left(\mathrm{e}^{\mathrm{j}}\right)\right| \leq 1 & \text { for } 0 \leq \omega \leq \pi / 2 \\
\left|H\left(\mathrm{e}^{\mathrm{j}}\right)\right| \leq 0.2 & \text { for } 3 \pi / 2 \leq \omega \leq \pi
\end{aligned}
$$

With $\mathrm{T}=1 \mathrm{sec}$ using bilinear transformation.
OR
Design a filter with:

$$
\begin{aligned}
\operatorname{Hd}\left(e^{j w}\right) & =e^{-j 3 w}-\pi / 4 \leq w \leq \pi / 4 \\
& =0 \quad \pi / 4<w \leq \pi / 4 \text { using Hamming window with } N=7 .
\end{aligned}
$$

UNIT - V

Sketch the following signals:

$$
\begin{aligned}
X_{1}(n) & =n, n>0 \\
& =0 \text { otherwise } \\
X_{2}(n) & =n^{2}, n>0 \\
& =0 \text { otherwise }
\end{aligned}
$$

Also sketch decimator and interpolated version of above systems with a factor of ' 2 '.

