www.FirstRanker.com

www.FirstRanker.com

Code: 13A54101

R13

B.Tech I Year (R13) Supplementary Examinations June 2016 MATHEMATICS – I

(Common to all branches)

Max. Marks: 70

Time: 3 hours

PART – A

(Compulsory Question)

- 1 Answer the following: (10 X 02 = 20 Marks)
 - (a) Write the differential equation obtained by eliminating 'c' from $y = cx + c^2 c^3$.
 - (b) The general solution of $(D^3 D)y = 0$.
 - (c) Expand e^x about x=1.
 - (d) Find the radius of curvature at $p = (\sqrt{2}, \sqrt{2})$ on the curve $x^2 + y^2 = 4$.
 - (e) Find asymptotes of the curve $x^3 + y^3 = 3axy$.
 - (f) Find the area bounded by the curve $\sqrt{x} + \sqrt{y} = 1$ and the coordinate axes.
 - (g) Find L{ $e^{-t} \sinh t$ }.
 - (h) Find the inverse Laplace transform of $\frac{e^{-3s}}{s+2}$
 - (i) Find the greatest value of the directional derivative of $\phi(x, y, z) = 2x^2 y z^4$ at (2, 1, -1).
 - (j) Find the volume of a region bounded by a surface S.

PART – B (Answer all five units, 5 X 10 = 50 Marks)

2 Solve :
$$x \log x \frac{dy}{dx} + y = 2 \log x$$

3 Solve by the method of variation of parameters $(D^2 + 1)y = x \sin x$.

OR

4 A rectangular box open at the top is to have a volume of 32cft. Find the dimensions of the box requiring least material for its construction.

OR

5 Find the envelope of $x \cos^3 \theta + y \sin^3 \theta = a$ for different values of θ .

Find the area of the solid generated by the rotating the loop of the curve $r^2 = a^2 \cos 2\theta$ about the initial line.

7 Find the volume of the ellipsoid
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

8 Find the inverse transform of
$$\frac{1}{s^2(s^2+a^2)}$$

9 Solve
$$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + x = 3te^{-t}$$
 given that $x(0) = 4$, $\frac{dx}{dt} = 0$ at $t = 0$.

Contd. in page 2

www.FirstRanker.com

UNIT - V

10 Evaluate $\int_{c} \left[(2xy^{3} - y^{2}\cos x)dx + (1 - 2y\sin x + 3x^{2}y^{2})dy \right]$ where c is the ac of the parabola $2x = \pi y^{2} \text{ from } (0,0) \text{ to } (\frac{\pi}{2},1)$

OR

11 Verify Gauss divergence theorem for $\overline{F} = (x^2 - yz)\overline{i} + (y^2 - zx)\overline{j} + (z^2 - xy)\overline{k}$ taken over the rectangular parallelepiped $0 \le x \le a$, $0 \le y \le b$, $0 \le z \le c$.

www.FirstRanker.com