PART - A

(Compulsory Question)
(a) Given matrix $\mathrm{A}=\left[\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right]$, check whether it is symmetric or not.
(b) Define a normal form of matrix.
(c) Explain Lagrange's interpolation formula for unequal intervals.
(d) State Regula-Falsi method for equal intervals.
(e) Compute y at $\mathrm{x}=0.25, y^{\prime}=2 \mathrm{xy}, \mathrm{y}(0)=1$ by Euler's method.
(f) Is $f(x)=\operatorname{coshax},-\pi<x<\pi$ even?
(g) Explain half range cosine series in the interval ($0, l$).
(h) Write the formula of Fourier sine Transform.
(i) Derive a partial differential equation by eliminating the arbitrary function f from the relation: $f\left(x^{2}+y^{2}, x^{2}-z^{2}\right)=0$.
(j) Give the One Dimensional wave equation for a stretched string.

PART - B

(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

Answer the following: (10 $\times 02=20$ Marks)

Find the characteristic equation of the matrix $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$ hence find A^{-1} and the matrix represented by $A^{8}-5 A^{7}+7 A^{6}-3 A^{5}+A^{4}-5 A^{3}+8 A^{2}-2 A+I$.

OR

Reduce the quadratic form $3 x^{2}+5 y^{2}+3 z^{2}-2 y z+2 z x-2 x y$ to the canonical form. Also specify the matrix of transformation.

UNIT - II

Derive formula to find the cube root of ' N ' using Newton's formula and also find the cube root of 15.

OR

Apply Newton's forward interpolation formula to compute the value of $\sqrt{5.5}$ up to three decimal places. Given that $\sqrt{5}=2.236, \sqrt{6}=2.449, \sqrt{7}=2.646$, and $\sqrt{8}=2.828$.

UNIT - III

Compute the integral $\int_{0}^{6} \frac{d x}{1+x^{2}}$, using (i) Trapezoidal rule. (ii) Simpson's $1 / 3^{\text {rd }}$ rule.
OR
Given $y^{\prime}=y+e^{x}, y(0)=0$ using modified Euler's method, find $y(0.2)$ and $y(0.4)$.

```
*****
```

Contd. in page 2
$8 \quad$ Find the Fourier sine series for $f(x)=2 x-x^{2}$ in $0<x<3$.
OR
$9 \quad$ Find the Fourier transform of $f(x)=\left\{\begin{array}{lll}1-x^{2} & \text { for } & |x| \leq 1 \\ 0 & \text { for } & |x|>1\end{array}\right.$ and hence
$\int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} \cos (x / 2) d x$ and $\int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} d x$

UNIT - V

Form the P.D.E of the following by eliminating the arbitrary functions:
(a) $Z=y^{2}+2 f\left(\frac{1}{x}+\log y\right)$.
(b) $\quad x y z=f\left(x^{2}+y^{2}+z^{2}\right)$.

11 A string is stretched and fastened to two points l apart. Motion is started by displacing the string into the form $y=k\left(l x-x^{2}\right)$ from which it is released at time $t=0$. Find the displacement of a string at a distance of x from one end at a time t.

