B.Tech II Year II Semester (R09) Supplementary Examinations May/June 2016 HYDRAULICS \& HYDRAULIC MACHINERY

(Civil Engineering)
Time: 3 hours
Max. Marks: 70

Answer any FIVE questions
 All questions carry equal marks

1 (a) Derive the geometrical conditions for the most economical section of rectangular channel.
(b) Compute the value N of a trapezoidal channel section having bottom width $10 \mathrm{~m} . \mathrm{y}_{\mathrm{n}}=2.5 \mathrm{~m}$ side slope of 2 horizontal to 1 vertical.

2 (a) Derive the dynamic equation of GVF.
(b) A wide rectangular channel $3.75 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}$ width is laid with a break in the bottom slope S_{1} to S_{2}. The slope S_{2} is equal to 1 in 500 . Determine the location of the jump if the slope S_{1} is 1 in 100 . Take $\mathrm{n}=0.025$.

3 (a) What do you mean by dimensionally homogenous equation? Give few examples.
(b) What is meant by hydraulic similarity between a model and prototype?

4 (a) A jet of water moves smoothly over the surface of a curved vane. Analyze the forces acting on the vane and determine the resultant force in magnitude and direction. Assume shock less flow at entry and exit.
(b) Water impinges on a series of curved vanes entering at 30° and leaving at 120° to the direction of motion of vanes. The velocity of water at entry is $30 \mathrm{~m} / \mathrm{s}$ and the vane velocity both at its inlet and exit tips is $15 \mathrm{~m} / \mathrm{s}$. Determine the vane angles for no shock conditions, the work done per unit weight of fluid and the hydraulic efficiency of the system. Neglect friction effects.

5 (a) Explain the design specifications of a Pelton wheel.
(b) A Kaplan turbine is provided with a straight conical draft tube of inlet diameter 3 m and outlet diameter 5 m . The inlet is 5 m above the tail race level. The velocity of water at the inlet is $4.8 \mathrm{~m} / \mathrm{s}$. The loss of head in the draft tube is equal to one-half the velocity head at outlet. Calculate the pressure of water at inlet and the horsepower lost due to friction in the tube.

6 (a) Define specific speed of a turbine and derive an expression for the same.
(b) What are the different types of governors? Explain them in brief.

7 (a) What do you mean by a pump? Under what conditions would a reaction turbine work as a pump.
(b) A centrifugal pump delivers 300 lps of water against a head of 5 m when running at 510 rpm . At what speed should a geometrically similar pump run when delivering 150 lps at a head of 10 m . Determine the ratio of linear dimensions of the pump.

8 (a) Describe pumped storage plant with a neat sketch.
(b) What are the main points of difference between a differential surge tank and compound surge tank? Discuss the relative advantages of a compound surge tank.

