B.Tech IV Year I Semester (R09) Supplementary Examinations June 2016

FINITE ELEMENT METHODS IN CIVIL ENGINEERING
(Civil Engineering)
Time: 3 hours
Max. Marks: 70

Answer any FIVE questions
 All questions carry equal marks

1 (a) What are the merits and demerits of finite element methods?
(b) Discuss the minimization concept of total potential energy.

2 (a) Define plane stress and plane strain with suitable examples.
(b) Explain about axisymmetric revolution of loading with a neat sketch.

3 (a) Derive shape function for one dimensional element and state their characteristics.
(b) Determine the displacements and the support reactions for the stepped bar as shown below, $\mathrm{E}_{\text {Aluminum }}=70 \mathrm{GPa}, \mathrm{E}_{\text {Brass }}=105 \mathrm{GPa}, \mathrm{E}_{\text {steel }}=200 \mathrm{GPa}$. Take all areas in mm^{2}.

4 (a) What is geometric invariance?
(b) For a three nodded triangular element, the temperatures are $80^{\circ} \mathrm{C}, 50^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ at the three nodes say 1, 2 and 3 nodes respectively. The nodal coordinates in the global system are $\left(x_{1}, y_{1}\right)=(2,3),\left(x_{2}, y_{2}\right)=(5,7)$ and $\left(x_{3}, y_{3}\right)=(3,9)$. Find the temperature at the point $P(4,6)$.

For the plane stress element shown in the figure below, the nodal displacements are $u_{1}=2.0 \mathrm{~mm}$, $\mathrm{v}_{1}=1.0 \mathrm{~mm} ; \mathrm{u}_{2}=0.5 \mathrm{~mm}, \mathrm{v}_{2}=0.25 \mathrm{~mm}$ and $\mathrm{u}_{3}=3.5 \mathrm{~mm}, \mathrm{v}_{3}=1.5 \mathrm{~mm}$, determine the element stresses. Let $\mathrm{E}=200 \mathrm{GPa}, \mu=0.3$ and $\mathrm{t}=10 \mathrm{~mm}$.

Code: 9A01701

6 (a) Differentiate between isoparametric, sub parametric and super parametric elements.
(b) Consider the iso-parametric quadrilateral with the nodes $1,2,3$ and 4 at (15, 0), (17, 12), (7, 10) and $(6,2)$ respectively, which has local coordinates are (0,0). Compute the Jacobian matrix.
$7 \quad$ For the given plane stress axi-symmetric element as shown below, determine stiffness matrix. Take E $=210$ GPa and $\mu=0.3$.

8 Write short notes on the following:
(a) Static condensation.
(b) Solution technique for static loads.

