Code: 9A02709

R09

Max. Marks: 70

B.Tech IV Year I Semester (R09) Supplementary Examinations June 2016

OPTIMIZATION TECHNIQUES

(Electrical & Electronics Engineering)

Time: 3 hours

Answer any FIVE questions All questions carry equal marks

What is optimization? Give engineering applications of optimization.

- Classify optimization problems and explain briefly with suitable examples.
- State the various methods available for solving a multivariable optimization problem with equality 2 (a) constraints.
 - (b) Consider the following problem:

Minimize
$$f(x) = x_1^2 + x_2^2 + x_3^2$$

Subject to constraints

$$x_1 + x_2 + x_3 \ge 5$$

$$2 - x_2 x_3 \le 0$$
 and x_1 , $x_2 \ge 0$, $x_3 \ge 2$

Determine whether the Kuhn-Tucker conditions are satisfied at the following point (2, 1, 2).

- State an LP problem in standard form. (a)
 - Solve the following problem by simplex method:

Maximize
$$Z = x + 3y$$

Subject to constraints

$$-4x + 3y \le 12$$

$$x + y \leq 7$$

$$x - 4y \le 2$$
, $x, y \ge 0$

inker com Find the optimum solution to the following transportation problem for which the cost, origin availabilities 4 and destination requirements are as given below.

			Availability				
		Α	В	O	D	Е	Availability
From	O ₁	3	4	6	8	8	20
	O_2	2	10	1	5	30	30
	O_3	7	11	20	40	15	15
	O_4	2	1	9	14	18	13
Requirements		40	6	8	18	6	

- Find the minimum of $f(x) = x^5 5x^3 20x + 5$ by using the quadratic interpolation method. 5
- Minimize $f(x_1, x_2) = x_1 x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ starting from the point (0, 0) by using steepest 6 decent method.
- Minimize $f(x_1, x_2) = \frac{1}{3}(x_1 + 1)^3 + x_2$ 7

Subject to $g_1(x_1, x_2) = -x_1 + 1 \le 0$

 $g_2(x_1, x_2) = -x_2 \le 0$. By using the interior penalty function method.

- Explain the dynamic programming problem.
 - (b) Minimize $Z = y_1^2 + y_2^2 + y_3^2$ subject to $y_1 + y_2 + y_3 \ge 15$ and $y_1, y_2, y_3 \ge 0$.