Time: 3 hours
Max. Marks: 70
Answer any FIVE questions
All questions carry equal marks

1 (a) Explain the 7 bit Hamming code.
(b) A receiver with even parity Hamming code is received the data as 1101101. Determine the correct code.

2 (a) State and prove DeMorgan's laws. Mention gate equivalents.
(b) Determine the sum of minterms canonical form of the following function:

$$
F(A, B, C)=\left(A^{\prime}+B\right)\left(B^{\prime}+C\right)
$$

(c) Implement the Boolean function $F=A(B+C D)+B C^{\prime}$ using only NOR gates.

3 (a) What are the advantages of Tabulation method over K-map?
(b) Simplify the following Boolean function using Tabulation method.

$$
Y(A, B, C, D)=\sum(0,1,2,3,5,7,8,9,11,14)
$$

4 (a) What is Encoder? Design Octal to Binary Encoder.
(b) Design $5 * 32$ decoder using two $4 * 16$ decoders with block diagram.

5 (a) What are the steps involved to synthesize the Boolean expression?
(b) Write short notes on multi-gate synthesis.

6 (a) What is race-around problem in JK flip-flop? Explain how it is eliminated in Master-Slave J-K flip-flop.
(b) Draw the truth tables and symbols of S-R, J-K, T and D flip-flop.

7 (a) Explain the capabilities and limitations of finite state machines.
(b) Determine minimal state equivalent of state table given below.

PS	$N S, Z$	
	$X=0$	$X=1$
1	1,0	1,0
2	1,1	6,1
3	4,0	5,0
4	1,1	7,0
5	2,0	3,0
6	4,0	5,0
7	2,0	3,0

8 (a) Explain in detail the block diagram of ASM chart.
(b) Draw the portion of an ASM chat that-speeifies the conditionat operation to inerement register R during state T1 and transfer to statew.Fifsquatrakinputs.if and y are $=1$ and 0 respectively.

