B.Tech III Year II Semester (R09) Supplementary Examinations May/June 2016

DIGITAL SIGNAL PROCESSING

(Common to EIE, E.Con.E, ECC and ECE)

Time: 3 hours Max. Marks: 70

Answer any FIVE questions
All questions carry equal marks

- 1 Check the following systems for memory and stability:
 - (i) $y(n) = 3^n u(n)$.
 - (ii) $y(n) = e^{x(n)}$.
 - (iii) $y(n) = \cos (0.5n\Pi) u(n)$.
- 2 Given the two sequences:
 - (a) $x_1(n) = 1$ $0 \le n \le 3$.
 - (b) $x_2(n) = (2)^{-n}$ $0 \le n \le 3$.

Find circular convolution of above sequences. Also verify the answer with DFT method.

- 3 Explain radix 2 DIF-FFT algorithm in detail. Explain how calculations are reduced.
- 4 Consider an LTI system, initially at rest, described by the difference equation:

$$y(n) = (1/4) y(n-2) + x(n)$$

- (i) Determine the impulse response of the system.
- (ii) Realize the system in Direct form-I and in Parallel form.
- 5 (a) Compare Impulse Invariant and Bilinear Transformation methods of IIR filter approximations.
 - (b) Use Bilinear Transformation method to find H(z) for:

$$H(s) = 1/(s + 0.5)^2$$

Design high-pass filter using hamming window with a cutoff frequency of 1.5 rad/sec and N = 9. Consider:

$$H_d(e^{j\omega}) = e^{-j\alpha \omega}$$
 $\omega_c \le |\omega| \le \pi$

= 0 otherwise

Also find $H(e^{j\omega})$.

- 7 (a) What are the advantages of multi rate signal processing?
 - (b) Sketch the following signals:

$$x_1(n) = 3n$$
 $n > 0$

=0 otherwise

Also sketch decimated and interpolated version of above signal with factor of '4'.

- 8 Write short notes on the following:
 - (a) Coding redundancy.
 - (b) Single Echo filter.
 - (c) STFT.
