Code: 9A10504

R09

B.Tech III Year II Semester (R09) Supplementary Examinations May/June 2016

LINEAR & DIGITAL IC APPLICATIONS

(Common to EEE & MCT)

Time: 3 hours Max. Marks: 70

Answer any FIVE questions All questions carry equal marks

- 1 (a) Why frequency compensation is required for an op amp and explain frequency compensation technique using suitable diagrams?
 - (b) Define the terms PSRR, CMRR, slew rate, input bias current, input off set voltage and gain bandwidth product.
- 2 (a) Write the important features of instrumentation amplifier. Draw a system whose gain is controlled by an adjustable resistance and explain each block.
 - (b) Explain and draw the output waveforms of the ideal integrator circuit when the input is sine, step and square wave input.
- 3 (a) Draw and explain the block diagram of PLL. Derive the expression for capture range.
 - (b) Design a monostable multi vibrator using 555 timer to produce a pulse width of 100 m sec.
- 4 (a) What are the parameters that are necessary to define the electrical characteristics of CMOS circuits? Mention the typical values of a CMOS NAND gate.
 - (b) Design a CMOS 4-input OR gate. Draw the logic diagram and function table.
- 5 (a) Design a transistor circuit of 2-input ECL NOR gate. Explain the operation with the help of function table.
 - (b) Explain the following items with reference to TTL gate:
 - (i) Voltage levels for logic '1' & logic '0'.
 - (ii) DC noise margin.
 - (iii) Low state unit load.
 - (iv) High state fan out.
- 6 (a) Explain with an example, the syntax and the function of the following VHDL statements:
 - (i) Case statement.
 - (ii) Loop statements.
 - (b) Explain the use of packages. Give the syntax and structure of a package in VHDL.
- 7 (a) With the help of logic diagram explain 74 x 157 multiplexer. Write the dataflow style VHDL program for the IC.
 - (b) Design a two digit BCD adder using logic gates.
- 8 (a) Explain right shift register using D flip flop with the help of block diagram.
 - (b) Design a modulo-12 ripple counter using 74 x 74. Write a VHDL program for this logic using data flow style.