B.TECH. I Year(R09) Regular Examinations, May/June 2010 **MATHEMATICS-I**

(Common to all branches)

Time: 3 hours

Max Marks: 70

Answer any FIVE questions All questions carry equal marks

- 1. (a) Solve: (y2 2xy)dx = (x2 2xy)dy.
 - (b) Solve: (x2 ay)dx = (ax y2)dy.
- 2. (a) Solve: (D2 5D + 6) y = xe4x
 - (b) Solve: (D2 + a2) y = Secax
- 3. (a) Verify Rolle's theorem for $f(x) = e^{-x} \sin x$ in $[0, \pi]$.
 - (b) Verify Rolle's theorem for $f(x) = \sqrt{4 x^2}$ in [-2, 2].
- (a) Evaluate $\int_{0}^{1} \int_{0}^{X^{2}} e^{y/x} dy \ dx$. 4. (a) Find the radius of curvature at any point on the curve $y = c \cosh \frac{x}{c}$.
- (a) Evaluate $\int_{0}^{1} \int_{0}^{X^2} e^{y/x} dy \ dx$.
 - (b) Change the order of integration and evaluate $\int_0^{4a} \int_{x^2/4a}^{2\sqrt{aa}}$
- 6. (a) Find the Laplace transform of i) e-3t (2 \cos 5t (3 \sin 5t) . ii) e3t \sin 2 t
 - (b) Find $L^{-1}\left\{\frac{s^2}{(s^2+4)(s^2+9)}\right\}$ Using Convolution theorem.
- 7. (a) Using Laplace Transform, show that $\int_0^\infty t^2 e^{-4t} \sin 2t dt = \frac{11}{500}$.
 - (b) Solve the D.E $y^{11} + n^2y = a\sin(nt+2)$, y(0) = 0, $y^1(0) = 0$ Using Laplace transform.
- 8. (a) If r=xi+yj+zk, show that $\nabla r^n = nr^{n-2}\overline{r}$
 - (b) Find the works done in moving in a particle in the force field $\overline{F} = (3x^2)i + (2zx y)j + zk$, along i) the straight line form (0,0,0) to (2,1,3) ii) the curve defined by $x^2 = 4y$, $3x^3 = 8z$ from

B.TECH. I Year(R09) Regular Examinations, May/June 2010 **MATHEMATICS-I**

(Common to all branches)

Time: 3 hours

Max Marks: 70

Answer any FIVE questions All questions carry equal marks

- 1. (a) Solve : $\left(1 + e^{x/y}\right) dx + \left(1 \frac{x}{y}\right) e^{\frac{x}{y}} dy = 0$ item Solve : $x dx + y dy = \frac{xdy ydx}{x^2 + y^2}$.
- 2. (a) Solve : $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 3y = e^{2x}$ item Solve : (D3 5D2 + 8D 4) y = e2x
- 3. (a) Verify Rolle's theorem for f(x) = (x a)m (x b)n in [a, b]. item Verify Rolle's theorem for f(x) $= \log \frac{x^2 + ab}{(a+b)x}$ in [a, b].
- 4. (a) Trace the curve y = x3. item Trace the curve y = (x 1)(x 2)(x 3).
- 5. (a) Evaluate $\iint_R y \ dx \ dy$, where R is the region bounded by the parabola 2 item Evaluate the integral by changing the order of integration $\int_0^1 \int_0^{\sqrt{(1-x)}} dx$
- (a) Find the Laplace transform of f(t) defined as $f(t) = t/\tau wheno < t < \tau$ = $1whent > \tau$. item Find $L^{-1}\left\{\frac{s}{(s2+a2)^2}\right\}$ Using Convolution theorem.
- 7. (a) Using Laplace transform, evaluate $\int_0^\infty \frac{(\cos at \cos bt)}{t} dt$. Item Solve the D.E. $y^{11} + 2y^1 + 5y = e^{-t} \sin t$, y(0) = 0, $y^1(0) = 1$. Using L.T.
- 8. (a) If A is a constant vector and R=xi+yj+zk, prove that $\nabla X\left(\frac{\overline{A}X\overline{r}}{r^n}\right) = \frac{(2-n)\overline{A}}{r^n} + \frac{n(\overline{r}.\overline{A})\overline{r}}{r^{n+2}}$. item If $\overline{F} = (5xy - 6x^2)i + (2y - 4x)j$, Evaluate $\int_c \overline{F} \cdot d\overline{R}$, where C is the curve in the xy-plane y = $x^{3} from(1,1) to(2,8).$ NNN.5

3

B.TECH. I Year(R09) Regular Examinations, May/June 2010 **MATHEMATICS-I**

(Common to all branches)

Time: 3 hours

Max Marks: 70

CON

Answer any FIVE questions All questions carry equal marks

- 1. (a) Solve $\frac{dy}{dx} + \frac{y \cos x + \sin y + y}{\sin x + x \cos y + x} = 0$ (b) Solve $\frac{y(xy + e^x)dx e^x dy}{y^2} = 0$
- 2. (a) Solve: $(D2 3D + 2)y = \cos hx$
 - (b) Solve: $(D + 2) (D 1)2 4 = e-2x + 2 \sin hx$
- 3. (a) Verify Rolle's theorem for $f(x) = x(x+3) e^{-x/2}$ in [-3, 0].
 - (b) Verify Rolle's theorem for $f(x) = ex \sin x$ in [0,].
- 4. (a) Trace the curve $r = a(1 + \cos \theta)$.
 - (b) Trace the curve $r = a + b \cos \theta$, a > b.
- 5. (a) Evaluate $\int_A xy dx dy$, where A is the domain bounded by x-axis, ordinate x=2a and the curve
 - (b) Evaluate the integral by changing the order of integration $\int_0^\infty \int_x^\infty \frac{e^{-y}}{y} dy \ dx$.
- (a) Find the Laplace Transform of $\left\{ \left(\sqrt{t} + \frac{1}{\sqrt{t}}\right)^3 \right\}$
 - (b) Find $L^{-1} \left\{ \frac{s}{s^4 + 4a^4} \right\}$.
- 7. (a) Using Laplace transform, evaluate $\int_0^\infty \frac{(e^{-t}-e^{-2t})}{t} dt$.
 - (b) Solve the D.E $(D^2 + n^2)y = a \sin(nt + a)$, given y = Dy = 0 Using Laplace transform.
- 8. (a) Find the directional derivative of the function $f = x^2 y^2 + 2z^2$ at the point P (1, 2, 3) in the direction of the line PQ where Q is the point (5, 0, 4).
 - (b) Evaluate the Line integral $\int_c \left[(x^2 + xy)dx + (x^2 + y^2)dy \right]$ where c is the squre formed by the lines x = 1 and y = 1.

B.TECH. I Year(R09) Regular Examinations, May/June 2010 **MATHEMATICS-I**

(Common to all branches)

Time: 3 hours

Max Marks: 70

Answer any FIVE questions All questions carry equal marks

- 1. (a) Solve: (i) $\frac{ydx xdy}{x^2} + e^{y^2}dy^2 = 0$ (ii) $\frac{ydx xdy}{xy} + 2x\sin x^2 dx = 0$
 - (b) Solve: (i) ydx + xdy + xy (ydx xdy) = 0(ii) xdy + 2ydx = 2y2xdy
- 2. (a) Solve: (D2 + 5D + 6)y = ex
 - (b) Solve: (D2 + 6D + 9) y = 2 e-3x
- 3. (a) Verify Rolle's theorem for $f(x) = x^2 5x + 6$ in [2, 3].
 - (b) Examine if Rolle's theorem is applicable for the function $f(x) = \tan x$ in [0,7].
- (a) Trace the curve $x = a(+\sin)$, $y = a(1 + \cos)$.
 - (b) Trace the curve $x = a(-\sin y)$, $y = a(1 \cos y)$.
- (a) Evaluate $\int_0^3 \int_1^2 xy(1+x+y)dy dx$
 - (b) Evaluate the integral by changing the order of integration
- (a) Find the Laplace transform of i) $\left\{\frac{\sin 3t \cdot \cos t}{t}\right\}$. ii) $\{t^2 \sin 2t\}$.
 - (b) Find $L^{-1}\left\{\frac{s+1}{(s^2+2s+2)^2}\right\}$.
- 7. (a) Using Laplace transform, evaluate $\int_0^\infty \frac{(\cos 5t \cos 3t)}{t} dt$.
 - (b) Solve the D.E. $\frac{d^2x}{dt^2} + 9x = \sin t$ Using L.T. given that $x(0) = 1, x\left(\frac{\pi}{2}\right) = 1$.
- 8. (a) Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the point (2,-1, 2).
 - (b) Apply Greens theorem to evaluate $\int_{C} [(2x^2 y^2)dx + (x^2 + y^2)dy]$, where C is the boundary of the area enclosed by the x-axis and upper half of the circle $x^2 + y^2 = a^2$.