

 $\left[5\right]$

[5]

[6]

[4+6+6]

B.Tech I Year(R05) Supplementary Examinations, May/June 2010 MATHEMATICS-I (Common to all branches) urs Max Marks: 80

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks $\star \star \star \star \star$

- 1. (a) Test the convergence of the series $\sum n! \frac{2^n}{n^n}$
 - (b) State and prove Cauchy Mean value theorem.
 - (c) If 0 < a < b < 1, using Lagrange's mean value theorem, prove that $\frac{b-a}{\sqrt{1-a^2}} < \sin^{-1}b \sin^{-1}a < \frac{b-a}{\sqrt{1-b^2}}$
- 2. (a) Find Taylor's expansion of $f(x,y) = \cot^{-1}xy$ in powers of (x+0.5) and (y-2) up to second degree terms.
 - (b) Show that the evolute of $x = a \left(\cos\theta + \log \tan \frac{\theta}{2} \right)$, $y = a \sin\theta$ is the catenary $y = a \cosh \frac{x}{a}$. [8+8]
- 3. (a) Find the surface area of the solid generated by the revolution of the loop of the curve $x = t^2$, $y = t \frac{t^3}{3}$ about x aixs.
 - (b) Find the area of the loop of the curve $y^2(a+x) = x^2(x-a)$. [8+8]
- 4. (a) Form the differential equations of all circles which passes through the origin whose centres lie on x axis.
 - (b) Solve the differential equation $\frac{dy}{dx} + yx = y^2 e^{x^2/2} \sin x$.
 - (c) Find the orthogonal Trajectories of the family of curves $r=2a(\cos\theta+\sin\theta)$.
- 5. (a) Solve the differential equation: $(D^3 + 1)y = \sin 3x \cos^2 x$.
 - (b) Solve the differential equation: $x^2 \frac{d^2y}{dx^2} 3x \frac{dy}{dx} + 4y = (1+x)^2.$ [6+10]
- 6. (a) Find the Laplace Transformations of the following functions $e^{-3t}(2\cos 5t + 3\sin 5t)$
 - (b) Find $D^{-1} \left[\log \left(\frac{s+1}{s-1} \right) \right]$ (c) Evaluate: $\int_{0}^{1} \int_{0}^{\sqrt{1+x^2}} \frac{dx \, dy}{(1+x^2+y^2)}$ [5+6+5]
- 7. (a) Prove that $\operatorname{div}(\mathbf{A} \times \mathbf{B}) = \mathbf{B}.\operatorname{curl}\mathbf{A} \mathbf{A}.\operatorname{curl}\mathbf{B}$.
 - (b) Find the directional derivative of the scalar point function ϕ (x,y,z) = 4xy² + 2x²yz at the point A(1, 2, 3) in the direction of the line AB where B = (5,0,4). [8+8]
- 8. State Green's theorem and verify Green's theorem for $\oint_C [(xy + y^2)dx + x^2dy]$, where C is bounded by y = x and $y = x^2$. [16]
