B.Tech I Year(R05) Supplementary Examinations, May/June 2010 MATHEMATICS-I
 (Common to all branches)

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Test the convergence of the series $\sum n!\frac{2^{n}}{n^{n}}$
(b) State and prove Cauchy Mean value theorem.
(c) If $0<a<b<1$, using Lagrange's mean value theorem, prove that $\frac{b-a}{\sqrt{1-a^{2}}}<\sin ^{-1} b-\sin ^{-1} a<\frac{b-a}{\sqrt{1-b^{2}}}$
2. (a) Find Taylor's expansion of $f(x, y)=\cot ^{-1} x y$ in powers of $(x+0.5)$ and ($\left.y-2\right)$ up to second degree terms.
(b) Show that the evolute of $x=a\left(\cos \theta+\log \tan \frac{\theta}{2}\right), \mathrm{y}=\mathrm{a} \sin \theta$ is the qatenary $y=a \cosh \frac{x}{a}$. [8+8]
3. (a) Find the surface area of the solid generated by the revolution of the loop of the curve $x=t^{2}, y=$ $t-\frac{t^{3}}{3}$ about x aixs.
(b) Find the area of the loop of the curve $y^{2}(a+x)=x^{2}(x-a)$.
4. (a) Form the differential equations of all circles which passes through the origin whose centres lie on x axis.
(b) Solve the differential equation $\frac{d y}{d x}+y x=y^{2} e^{x^{2} / 2} \sin x$.
(c) Find the orthogonal Trajectories of the fanily of curves $\mathrm{r}=2 \mathrm{a}(\cos \theta+\sin \theta)$.
5. (a) Solve the differential equation: $\left(D^{3}+1\right) y=\sin 3 \mathrm{x}-\cos ^{2} \mathrm{x}$.
(b) Solve the differential equation: $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+4 y=(1+x)^{2}$.
6. (a) Find the Laplace Transformations of the following functions $\mathrm{e}^{-3 t}(2 \cos 5 \mathrm{t}+3 \sin 5 \mathrm{t})$
(b) Find $\mathbb{A}-1\left[\log \left(\frac{s+1}{s-1}\right)\right]$
(c) Evaluate: $\int_{0}^{1} \int_{0}^{\sqrt{1+x^{2}}} \frac{d x d y}{\left(1+x^{2}+y^{2}\right)}$
7. (a) Prove that $\operatorname{div}(\mathbf{A} \times \mathbf{B})=\mathbf{B} . c u r l \mathbf{A}$ - A.curlB.
(b) Find the directional derivative of the scalar point function $\phi(x, y, z)=4 x y^{2}+2 x^{2} y z$ at the point $\mathrm{A}(1,2,3)$ in the direction of the line AB where $\mathrm{B}=(5,0,4)$.
8. State Green's theorem and verify Green's theorem for $\oint_{C}\left[\left(x y+y^{2}\right) d x+x^{2} d y\right]$, where C is bounded by $\mathrm{y}=\mathrm{x}$ and $\mathrm{y}=\mathrm{x}^{2}$.
