$\mathbf{K}5$

B.Tech I Year(R05) Supplementary Examinations, May 2010 **APPLIED PHYSICS**

(Common to Electrical & Electronic Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Control Engineering, Computer Science & Systems Engineering and Electronics & Computer Engineering) Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1	(a)	Define emisted lettice, unit cell lettice percenter and econdination number
1.	(a)	Consider a Body Contered Cubic lettice of identical storms baying radius P. Compute
	(0)	i the number of stoms per unit cell
		ii. the coordination number and
		iii. the packing fraction. [8]
2.	(a)	Draw the (112) and (120) planes, and the [112] and [120] directions of a simple cubic crystal. [4]
	(b)	Derive an expression for the inter-planar spacing in the case of a cubic structure. [8]
	(c)	Calculate the glancing angle at (110) plane of a cubic crystal having axial length 0.26 nm corresponding to the second order diffraction maximum for the X-rays of wavelength 0.065 nm. [4]
3.	(a)	Explain Schottky and Frenkel defects with the help of suitable figures. [10]
	(b)	Explain the significance of Burgers vector. [6]
4.	(a)	Explain the origin of energy bands in solids.
		[6]
	(b)	Assuming the electron - lattice interaction to be responsible for scattering of conduction electrons in a metal, obtain an expression for conductivity in terms of relaxation time and explain any three draw backs of classical theory of free electrons. [6]
	(c)	Find the temperature at which there is 1% probability of a state with an energy 0.5 eV above Fermi energy. [4]
5.	(a)	What are paramagnetic materials? Explain. [4]
	(b)	Obtain an expression for paramagnetic susceptibility (χ) . How does the paramagnetic susceptibility of a material vary with temperature? [8]
	(c)	A paramagnetic material has 10^{28} atoms per m^3 . Its susceptibility at 350 K is 2.8×10^{-4} . Calculate the susceptibility at 300 K. [4]
6.	(a)	State the expression for the density of electrons and holes in an intrinsic semiconductor. [4]
	(b)	Derive the expression for Fermi level. [6]
	(c)	Derive the relation between the intrinsic carrier concentration and absolute temperature. [6]
7.	(a)	Explain the terms: i. temporal coherence ii. population inversion iii. metastable state
		iv. stimulated emission [10]
	(b)	Why is the optical resonator required in lasers? Illustrate your answer with neat sketches. [6]
8.	(a)	What is total internal reflection? Discuss its importance in optical fibres. [6]
	(b)	Describe the various types of optical fibres, their advantages and limitations.
		[6]

(c) If the numerical aperture of a fibre is 0.245 with a core refractive index 1.51, calculate the refractive index of cladding as well as acceptance angle. [4]