Answer any FIVE Questions
 All Questions carry equal marks
 $\star \star \star \star \star$

1. (a) Explain the concept of self and mutual inductance.
(b) Distinguish between static induced emf and dynamically induced e.m.f.
(c) Two inductors have self inductance of 0.1 mH and 0.4 mH and a mutual inductance of 0.15 mH . What is the value of coefficient of coupling between them? If a current of $\mathrm{I}(\mathrm{t})=3 \operatorname{sint}+1.5$ $\sin 2 t$ is passed through the first inductor, what is the expression for the voltage induced in the second coil?
2. (a) Explain the Faraday's Law of electromagnetic induction?
(b) A cast steel ring has a circular cross section 3 cm in diameter and a mean circumference of 80 cm . The ring is uniformly wound with 600 turns.
i. Estimate the current required to produce a flux of 0.5 mcob in the ring.
ii. If a saw cut 2 mm wide is made in the ring, find approximately the flldx produced by the current found in (i).
iii. Find the current value which will give the same flux as in (i). Assume the gap density to be the same as in the iron and neglect fringing.
3. (a) Bring out the differences between series and parallef resonance?
(b) A series RLC circuit consists of resistance $\mathrm{R}-20 \Omega$, inductance, $\mathrm{L}=0.01 \mathrm{H}$ and capacitance, $\mathrm{C}=$ $0.04 \mu \mathrm{~F}$. Calculate the frequency at resonance. If a 10 Volts of frequency equal to the frequency of resonance is applied to this circuit, calcalate the values of V_{C} and V_{L} across C and L respectively. Find the frequencies at which these voltages V_{C} and V_{L} are maximum?
[6+10]
4. (a) Three impedances each of $(3-34) \Omega$ is connected in delta connection across a $3-\phi, 230 \mathrm{~V}$ balanced supply. Calculate the line and phase currents in the Δ connected load and the power delivered to the load?
(b) In power measurement of $8-\phi$ load connected by $3-\phi$ supply by two wattmeter method, prove that $\tan \theta=\frac{-\sqrt{3}\left(w_{1}-w_{2}\right)}{\left(w_{1}+w_{2}\right)}$ for leading power factor loads.
5. (a) Explain
i. Selffinductance
ii. Mutual Inductance.
(b) Two identical 1000 turns coils X and Y lie in parallel planes such that 60% of the magnetic flux produced by one coil links the other. A current of 5 A in X produces in it a flux of 0.05 mwb . If the current in X changes from +6 A to -6 A in 0.01 sec what will be the magnitude of the e.m.f induced in Y? Also, Calculate the self inductance of each coil and the mutual inductance?
(c) Define leakage factor and its effect in a magnetic circuit.
6. (a) Explain
i. Statically induced e.m.f and
ii. Dynamically induced e.m.f
(b) The combined inductance of two coils connected in series is 0.6 H or 0.1 H , depending upon the relative directions of the currents in the coils. If one of the coils when isolated has a self inductance of 0.2 H , Calculate
i. Mutual inductance, and
ii. The Coefficient of coupling.
(c) Explain the terms
i. MMF
ii. Reluctance.
7. A $20 \mu \mathrm{~F}$ capacitor is connected in series with a $1.2 \mathrm{M} \Omega$ resistor. This series combination is connected across a 120 V dc supply. Calculate.
(a) The time constant of the circuit
(b) The initial value of the charging current
(c) The initial rate of rise of voltage across the capacitor.
(d) The voltage across the capacitor after of a time equal to the time constant
(e) The circuit current after a time equal to the time constant.
(f) The voltage across the capacitor after 4 sec after switch on.
(g) The time taken by the capacitor voltage to reach 70 V .
8. (a) Draw the model graphs for the following (clearly indicate axis)
i. Current decay transient in RC discharging circuit
ii. V_{R} and V_{c} in RC discharging circuit
iii. Charging current profile in RL circuit
(b) A series R.C circuit has $\mathrm{R}=20 \Omega$ and $\mathrm{c}=100 \mu \mathrm{~F}$. A voltage $\vartheta=200 \sin 314 \mathrm{t}$ is applied at t $=2.15 \mathrm{~m}$ sec. Obtain an expression for i. Also, find the value of current after time 1 m . sec from the switching instant.
