Code No: R5102306

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) With the help of neat line sketch depict the different phases involved in the trasport of oxygen from rising gas bubbles into cells suspended in the liquid
 - (b) How does viscosity of gases and liquids change with temperature?
- 2. (a) What is gravitational force constant (g_c) explain its importance with the CGS units and dimensions.
 - (b) Define poundal and pound weight. How are they related? What are the dimensions and units of this conversion factor.
- 3. (a) What is a compressible fluid?
 - (b) With the help of a line sketch describe a simple manometer.
 - (c) Show that in a simple inclined tube manometer :
 - $\Delta P = R_i (\rho_A \rho_B) \sin \theta$ Where ΔP is the pressure difference; R_i is the level difference of liquid in the manometer measured along the inclined tube; ρ_A and ρ_B are the densities of the manometric fluid and fluid flowing respectively and θ is the angle of inclination of the tube to horizontal. [3+6+7]
- 4. (a) How are non Newtonian fluids classified by their shear stress shear rate behaviour illustrate with sketches.
 - (b) Explain power law fluid. Show the rheological behaviour. [8+8]
- 5. Explain with figures the process of compressible flow.
- 6. Particles of sphalerite (specific gravity = 4) are settling under the force of gravity in CCl_4 is at 20^0C (Specific gravity 1.594). The diameter of the sphalerite particles is 0.1mm. The volume fraction of sphalerite in CCl_4 is 0.20. What is settling velocity? [16]
- 7. Show that for incompressible flow the losses per unit weight of fluid between the upstream section and throat of a venturimeter are $KV_2^2/2g$ if $K = \{ (1/C_v)^2 \} \{ (1 (D_2/D_1))^4 \}$. [16]
- 8. Define pump and write the performance characteristic of a pump.

 $\mathbf{R5}$

Max Marks: 80

[8+8]

[16]

[16]