B.Tech I Year(R07) Supplementary Examinations, May/June 2010 CLASSICAL MECHANICS
 (Mechanical Engineering)

Answer any FIVE Questions

All Questions carry equal marks

1. The resultant of the two forces when they act at an angle of 65^{0} is 20 N . If the same forces are acting at right angles their resultant is 16.5 N . Determine the magnitude of the two forces.
2. Five strings are tied at a point and are pulled in all directions, equally spaced, from one another. If the magnitude of the pulls on three consecutive strings is $70 \mathrm{~N}, 40 \mathrm{~N}$ and 55 N respectively, find graphically the magnitude of the pulls on two other strings, if the system is in equilibrium.
3. Force vector is represented by a line AB . The coordinates of point A are $(2,3,4)$ and of point B $(1,-2,5)$ respectively. If the magnitude of force is equal to 20 N , then determine
(a) the components of the force along x, y and z axes and
(b) angles with the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axes.
4. A cylinder of length 750 mm and diameter 150 mm is standing on ts base. Determine the mass moment of inertia of the cylinder about
(a) the longitudinal axis and
(b) its base. Take the density of the material as $7830 \mathrm{kd} / \mathrm{m}^{3}$.
5. The acceleration of a particle is defined by the relation $a=2 e^{-0.3 t}$, where a and t are expressed in $\mathrm{m} / \mathrm{rec} 2$ and seconds, respectively $\mathrm{At} \mathcal{x}=0, \boldsymbol{y}=0$ of $\mathrm{t}=0$. Determine he velocity and position of the particle when $\mathrm{t}=0.6 \mathrm{~s}$.
6. (a) If a body travels half its total path in the last second as its free fall, starting from rest, find the total time and height at its fall.
(b) A ball rolls off the top of a stairway with a horizontal velocity at $1.5 \mathrm{~m} / \mathrm{s}$. The steps are 20 cm wide and 20 cm high. Which step will the ball hit first?
7. A particle which moves in rectilinear translation is acted upon by a resultant force R.
(a) Give the form of the impulse-momentum equation for the particle
(b) What is the linear momentum of the particle?
(c) What are the units of linear momentum?
(d) What is the graphical interpretation of an impulse?
8. The block vibrates in SHM with a period of 5 s when the two springs of constants K_{1} \& K_{2} are connected in series and 2 s when they are in parallel. Determine the ratio $\mathrm{K}_{1} / \mathrm{K}_{2}$ at the two spring constants. [16]
