B.Tech I Year(R07) Supplementary Examinations, May 2010
 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING
 (Bio-Technology)

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

1. (a) Define the terms
i. active power
ii. reactive power and
iii. apparent power, and give the expressions for the same.
(b) A single phase motor operating at $440 \mathrm{~V}, 50 \mathrm{HZ}$ supply is developing 10 kW with anefficiency of 84% and power factor 0.7 lag. Calculate (a) the input KVA and active power, and reactive power.
2. (a) Explain the process of voltage build up in a self-excited D.C machine.
(b) List out the various conditions to be satisfied for voltage build up process in a self-excited machine, and write down remedies if the conditions fail.
$[8+8]$
3. (a) Draw the energy band diagram of p-n junction under open circuit condition and explain its operation.
(b) Prove that the dynamic resistance of $\mathrm{p}-\mathrm{n}$ diode is $r \approx \frac{n v_{x}}{I}$
4. (a) Draw the circuit diagram of half wave reefifier and explain its operation.
(b) A half wave rectifier is fed by $220 \mathrm{~V}, 50 \mathrm{~Hz}$ via a step down transformer of turns ratio 11:1 find
i. the output DC and
ii. peak inverse voltage under no load condition.
5. (a) Compare the merits and drawbacks of FET and BJT.
(b) Sketch the basic structure of an n-channel JFET.
(c) Define the pinch off voltage V_{P} and sketch the depletion region before and after pinch-off and explain the reason.
6. (a) Compare the differences between voltage amplifiers and power amplifiers.
(b) Show that the maximum theoretical efficiency of class B push-pull amplifiers is 78.5%.
(c) Draw the circuit of a transformer coupled power amplifier and explain its operations with help of load-line analysis.
$[4+6+6]$
7. (a) List out the characteristics of OP-AMP.
(b) Explain about the concept of 'Virtual Ground' in OP-AMPs.
(c) Draw the circuit diagram of emitter coupled differential amplifier and obtain its DC analysis.. $[6+4+6]$
8. (a) Explain with a block diagram the major blocks of a digital computer.
(b) Implement the following with either NAND or NOR gates. Use only 4 gates only the normal inputs are available.
$\mathrm{F}=\mathrm{w}^{\prime} \mathrm{xz}+\mathrm{w}^{\prime} \mathrm{yz}+\mathrm{x}^{\prime} \mathrm{yz}^{\prime}+\mathrm{w}^{\prime} \mathrm{yy}^{\prime} \mathrm{z}$.
(c) With a circuit diagram, explain Counter type A to D converter.

$$
[4+6+6]
$$

