B.Tech. I Year(RR) Supplementary Examinations, May/June 2010 MATHEMATICS-I
 (Common to all branches)

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Test the convergence of the series $\sum \frac{(n!)^{2}}{(2 n)!} x^{2 n}$
(b) Test the following series for absolute /conditional convergence

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{(-1)^{n}}{(\log n)^{2}} \tag{6}
\end{equation*}
$$

(c) Show that $\sin ^{-1} x=x+\frac{x^{3}}{3!}+\frac{1^{2} \cdot 3^{2}}{5!} x^{5}+\frac{1^{2} \cdot 3^{2} \cdot 5^{2}}{7!} x^{7}+\ldots$.
2. (a) Find the stationary points of the following function ' u ' and find the maximum or the minimum $u=x^{2}+2 x y+2 y^{2}+2 x+y$
(b) Considering the evolute of a curve as the envelope of its normals, find the evolute of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
3. (a) Trace the Folium of Decartes: $\mathrm{x}^{3}+\mathrm{y}^{3}=3 \mathrm{axy}$.
(b) Determine the volume of the solid generated by revolving the limacon $\mathrm{r}=\mathrm{a}+\mathrm{b} \cos \theta(\mathrm{a}>\mathrm{b})$ about the initial line.
4. (a) Obtain the differential equation of the coaxial cireles of the system $x^{2}+y^{2}+2 a x+c^{2}=0$ where c is a constant and a is ja variable.
(b) Solve the differential equation:
$\left(x^{2}-2 x y+3 y^{2}\right) d x+\left(y^{2}+6 x y-x^{2}\right) d y=0$.
(c) Find the orthogonal trajectory of the family of the cardioids $r=a(1+\cos \theta)$
5. (a) Solve the differential equation: $\left(D^{2}-5 D+6\right) y=e^{x} \sin x$.
(b) Solve the differential equation: $y^{\prime \prime \prime}+2 y^{\prime \prime}-y^{\prime}-2 y=1-4 x^{3}$.
6. (a) Find the Laplage Transformation of the following function $e^{-3 t}(2 \cos 5 t-3 \sin 5 t)$
(b) State and prove convolution theorem to find the inverse of Laplace transforms.
(c) Use convolution theorem to find
$L^{-1}\left[\frac{16}{\left(s^{2}+4\right)\left(s^{2}+4\right)}\right]$
7. (a) Evaluate $\nabla \cdot\left[\mathrm{r} \nabla\left(1 / \mathrm{r}^{3}\right)\right]$ where $r=\sqrt{x^{2}+y^{2}+z^{2}}$
(b) Evaluate $\iint \mathbf{A} . n$ ds where $\mathbf{A}=18 \mathrm{zi}-12 \mathrm{j}+3 \mathrm{yk}$ and s is that part of the plane $2 \mathrm{x}+3 \mathrm{y}+6 \mathrm{z}=12$ which is located in the first octant.
8. Verify Stokes theorem for the function $F=x^{2} i+x y i$ integrated round the square whose sides are $x=$ $0, y=0, x=a$ and $y=a$ in the plane $z=0$.

