Code	No	o: RR100102	RR
Time	: 3	B.Tech. I Year(RR) Supplementary Examinations, May/June MATHEMATICS-I (Common to all branches) hours Answer any FIVE Questions All Questions carry equal marks *****	2010 Max Marks: 80
1.	(a)	Test the convergence of the series $\sum \frac{(n!)^2}{(2n)!} x^{2n}$	[5]
	(b)	Test the following series for absolute /conditional convergence $\sum_{n=2}^{\infty} \frac{(-1)^n}{n(\log n)^2}$	[6]
	(c)	Show that $\sin^{-1} x = x + \frac{x^3}{3!} + \frac{1^2 \cdot 3^2}{5!} x^5 + \frac{1^2 \cdot 3^2 \cdot 5^2}{7!} x^7 + \dots$	[5]
2.	(a)	Find the stationary points of the following function 'u' and find the maximum $u = x^2 + 2xy + 2y^2 + 2x + y$	n or the minimum
	(b)	Considering the evolute of a curve as the envelope of its normals, find the ev $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$	olute of the ellipse [8+8]
3.	(a)	Trace the Folium of Decartes : $x^3 + y^3 = 3axy$.	
	(b)	Determine the volume of the solid generated by revolving the limacon $r = a + b \cos\theta$ (a>b) about the initial line.	[8+8]
4.	(a)	Obtain the differential equation of the coaxial circles of the system $x^2+y^2+2ax + c^2 = 0$ where c is a constant and a is a variable.	[3]
	(b)	Solve the differential equation: $(x^2 - 2xy + 3y^2) dx + (y^2 + 6xy - x^2) dy = 0.$	[7]
	(c)	Find the orthogonal trajectory of the family of the cardioids $r = a (1 + \cos \theta)$	[6]
5.	(a)	Solve the differential equation: $(D^2 - 5D + 6)y = e^x \text{ sinx.}$	
	(b)	Solve the differential equation: $y''' + 2y'' - y' - 2y = 1 - 4x^3$.	[8+8]
6.	(a)	Find the Laplace Transformation of the following function $e^{-3t}(2\cos 5t - 3\sin 5t)$	[5]
	(b)	State and prove convolution theorem to find the inverse of Laplace transforms	5. [5]
	(c)	Use convolution theorem to find	
		$L^{-1} \left[\frac{10}{(s^2+4)(s^2+4)} \right]$	[6]
7.	(a)	Evaluate $\nabla [\mathbf{r}\nabla(1/\mathbf{r}^3)]$ where $r = \sqrt{x^2 + y^2 + z^2}$	
	(b)	Evaluate $\iint \mathbf{A} \cdot \mathbf{n}$ ds where $\mathbf{A}=18zi-12j+3yk$ and s is that part of the plane $2x-12z^{*}$	+3y + 6z = 12 which
		is located in the first octant.	[8+8]

8. Verify Stokes theorem for the function $F = x^2i + xyi$ integrated round the square whose sides are x =0, y = 0, x = a and y = a in the plane z = 0. [16]
