B.Tech I Year(RR) Supplementary Examinations, May/June 2010
 NETWORK THEORY

(Common to Electrical \& Electronic Engineering, Electronics \& Communication Engineering, Computer Science \& Engineering, Electronics \& Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics \& Control Engineering, Computer Science \& Systems Engineering, Electronics \& Computer Engineering and Instrumentation \& Control Engineering)
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks
 $\star \star \star \star \star$

1. (a) What are the V-i characteristics of R,L,C parameters? Explain.
(b) A $50 \mu \mathrm{~F}$ capacitor is initially charged to accumulate $100 \mu \mathrm{c}$. One uncharged capacitor of $200 \mu \mathrm{~F}$ is connected across it in parallel. How much charge will be transferred? How much energy is lost by the first capacitor?
(c) A voltage given by
$\mathrm{V}(\mathrm{t})=0$ for $\mathrm{t}<0$

$$
\begin{gathered}
=2 t \text { for } 0<t<2 \mathrm{Sec} \\
=-4 \text { for } 2<t<4 \text { sec. } \\
=-2 t+12 \text { for } 4<t<6
\end{gathered}
$$

is applied to a $10 \mu \mathrm{~F}$ capacitor. Find $\mathrm{i}(\mathrm{t})$. Sketch the wave form.

$$
[6+4+6]
$$

2. (a) Distinguish between electrical and magnetic circuits.
(b) The magnetic circuit of a certain electro magnet can be regarded as consisting of 3 parts in series, each being of uniform C.S. area.
Part I: Length $=10 \mathrm{~cm}, \mu_{r}=500$, C.S. area $=0.5 \mathrm{~cm}^{2}$
Part II: Airgap length 0.5 m C.S. area $=0.5 \mathrm{~cm}^{2}$
Part III: Length $=12 \mathrm{cms}, \mu_{r}=800$ C.S. area $=1 \mathrm{~cm}^{2}$
Determine the current required in a coil of 1000 turns to produce a flux density of $0.4 \mathrm{~Wb} / \mathrm{m}^{2}$ in the air gap. Neglect leakage.
(c) Explain what you understand by Leakage factor, What is/its effect?
3. (a) Explain about active, Reactive and apparent powers. Give expression for the above. Draw the power triangle.
(b) Given $\mathrm{i}=50 \sin (\mathrm{wt}+60)$
$\nu=200 \sin (\mathrm{wt}+30)$ Fine the ellements of the network with their values active, reactive and apparent power. [8+8]
4. (a) In a series RLC circuit $R=1 \mathrm{k} \Omega \mathrm{L}=100 \mathrm{mH}$ and $\mathrm{C}=12 \mathrm{pF}$. If a voltage of 200 V is applied to the combination. Find,
i. resonance frequency
ii. Q-factor

Bandwidth
Voltage across L and C.
(b) Derive the expression for impedance parameters in terms of h-parameters for a two port network. [8+8]
5. (a) A 3 phase 3 wire balanced supply is connected to an unbalanced 3 wire star connected load. Derive an expression for the neutral displacement voltage between supply and load neutral points.
(b) A 3phase, 3 wire 208 volts BYR system has a star connected load with $\mathrm{Z}_{R}=6 \angle 0^{0} \Omega \quad \mathrm{Z}_{Y}=6 \angle 30^{\circ}$ and $\mathrm{Z}_{B}=5 \angle 45^{0}$. Obtain the line currents and load voltages of the circuit using the neutral displacement method. Draw the phasor diagram.
$[6+10]$
6. (a) Define magneto motive force (MMF), Reluctance, and flux density in a magnetic circuit. Specify the units of each of the above quantities.
(b) Explain "dot convention" for a set of magnetically coupled coils.
(c) A cast steel electromagnetic has an air gap of length 2 mm and an iron path of length 30 cms . Find the MMF needed to produce a flux density of 0.8 T in the air gap. The relative permeability of the steel core at this flux density is 1000 . Neglect leakage \& fringing.
$[6+4+6]$
7. (a) Application of Laplace Transforms to Electric circuits only to be considered.
(b) Laplace transform mathemtical background should have been studied in Mathematics course.
8. (a) Derive the expression for $\mathrm{i}(\mathrm{t})$ for $\mathrm{R}-\mathrm{L}$ series circuit when excited by a sinusoidal source.
(b) For $\mathrm{R}-\mathrm{L}-\mathrm{C}$ series circuit with $\mathrm{R}=10 \Omega, \mathrm{~L}=0.2 \mathrm{H}, \mathrm{C}=50$ micro farads, determine the current $\mathrm{i}(\mathrm{t})$ when the switch is closed at $\mathrm{t}=0$. Applied voltage is $\mathrm{V}(\mathrm{t})=100 \operatorname{Cos}(1000 \mathrm{t}+60)^{0}$. $\quad[8+8]$

