II B.Tech I Semester(R05) Supplementary Examinations, May/June 2010 MATHEMATICS-II
 (Common to Civil Engineering and Mechanical Engineering)

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) For what value of K the matrix $\left[\begin{array}{cccc}4 & 4 & -3 & 1 \\ 1 & 1 & -1 & 0 \\ K & 2 & 2 & 2 \\ 9 & 9 & K & 3\end{array}\right]$ has rank 3.
(b) Find whether the following set of equations are consistent if so, solve them.

$$
\begin{align*}
& x_{1}+x_{2}+x_{3}+x_{4}=0 \\
& x_{1}+x_{2}+x_{3}-x_{4}=4 \\
& x_{1}+x_{2}-x_{3}+x_{4}=-4 \\
& x_{1}-x_{2}+x_{3}+x_{4}=2 . \tag{8+8}
\end{align*}
$$

2. (a) Find the eigen values and the corresponding eigen vectors of
3. (a) Prove that every square matrix can be uniquely expresses as a sum of symmetric and skew symmetric matrices.
(b) Find the nature of the quadtratic form indexand sigrature. $10 x^{2}+2 y^{2}+5 z^{2}-4 \mathrm{xy}-10 \mathrm{xz}+6 \mathrm{yz}$.
4. (a) Obtain a Fourier expansion for $\sqrt{1-\cos x}$ in the interval $-\pi<x<\pi$
(b) Represent the following function by a Fourier sin series $f(t)=\left\{\begin{array}{l}\mathrm{t}, 0<\mathrm{t} \leq \frac{\pi}{2} \\ \frac{\pi}{2}, \frac{\pi}{2}<\mathrm{t} \leq \pi\end{array}\right.$

$$
[10+6]
$$

5. (a) Form the partial differentiakequation by eliminating the arbitrary function from $\mathrm{z}=\mathrm{f}\left(x^{2}+y^{2}+\right.$ z^{2}).
(b) Solve the partial differential equation $\left(y^{2}+z^{2}\right) p-x y q=-x z$
(c) Solve the partial differential equation $\left(y^{2}+z^{2}-x^{2}\right) p-2 x y q=-2 z x$.
6. A bar 100 cm long, with insulated sides, A and B has its ends kept at $0^{\circ} \mathrm{c}$ and $100^{\circ} \mathrm{c}$ until study state conditions prevail. The temperature of the end B is reduced to $80^{\circ} \mathrm{c}$ and kept so while the end A is raised to $40^{\circ} \mathrm{C}$. Find the temperature distribution.
7. (a) Find the Fourier cosine transforms of $e^{-a x} \cos a x$.
(b) Prove that the Fourier transform of the convolution of $f(x)$ and $g(x)$ is the product of their Fourier transforms.
8. (a) If $\mathrm{Z}\left(\mathrm{n}^{2}\right)=\frac{z^{2}+z}{(z-1)^{3}}$, find $\mathrm{Z}\left(n^{3}\right)$ and $\mathrm{Z}\left(n^{4}\right)$
(b) Using convolution theorem find $\mathrm{Z}^{-1}\left[\frac{z^{2}}{(z-4)(z-5)}\right]$.
