Code No: R5210101

Time: 3 hours

II B.Tech I Semester(R05) Supplementary Examinations, May/June 2010 MATHEMATICS-II

(Common to Civil Engineering and Mechanical Engineering)

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- (a) For what value of K the matrix has rank 3. 1.
 - (b) Find whether the following set of equations are consistent if so, solve them.
 - $x_1 + x_2 + x_3 + x_4 = 0$ $x_1 + x_2 + x_3 - x_4 = 4$ $x_1 + x_2 - x_3 + x_4 = -4$ $x_1 - x_2 + x_3 + x_4 = 2.$

2. (a) Find the eigen values and the corresponding eigen vectors of

- (b) Prove that the product of the eigen values is equal to the determinent of the matrix. [10+6]
- (a) Prove that every square matrix can be uniquely expresses as a sum of symmetric and skew 3. symmetric matrices.
 - (b) Find the nature of the quadtratic form index and signature. $10x^2 + 2y^2 + 5z^2 - 4xy - 10xz + 6yz.$ [8+8]
- (a) Obtain a Fourier expansion for $\sqrt{1 \cos x}$ in the interval $-\pi < x < \pi$ 4.
 - (b) Represent the following function by a Fourier sin series $f(t) = \begin{cases} t, 0 < t \le \frac{\pi}{2} \\ \frac{\pi}{2}, \frac{\pi}{2} < t \le \pi \end{cases}$

[10+6]

- (a) Form the partial differential equation by eliminating the arbitrary function from $z = f(x^2 + y^2 + y^2)$ 5. z^{2}).
 - (b) Solve the partial differential equation $(y^2 + z^2) p xyq = -xz$
 - (c) Solve the partial differential equation $(y^2 + z^2 x^2) p 2xyq = -2zx$. [5+5+6]
- 6. A bar 100 cm long, with insulated sides, A and B has its ends kept at 0° c and 100° c until study state conditions prevail. The temperature of the end B is reduced to 80° c and kept so while the end A is raised to 40° C. Find the temperature distribution. [16]
- 7. (a) Find the Fourier cosine transforms of $e^{-ax} \cos ax$.
 - (b) Prove that the Fourier transform of the convolution of f(x) and g(x) is the product of their Fourier transforms. [8+8]
- 8. (a) If $Z(n^2) = \frac{z^2 + z}{(z-1)^3}$, find $Z(n^3)$ and $Z(n^4)$
 - (b) Using convolution theorem find $Z^{-1}\left[\frac{z^2}{(z-4)(z-5)}\right]$. [8+8]
