II B.Tech I Semester(R05) Supplementary Examinations, May/June 2010 MATHEMATICS-III
(Common to Electrical \& Electronic Engineering, Electronics \& Communication Engineering, Electronics \& Instrumentation Engineering, Electronics \& Control Engineering, Electronics \& Computer Engineering and Instrumentation \& Control Engineering)
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Show that $\beta(\mathrm{m}, \mathrm{n})=2 \int_{0}^{\pi / 2} \sin ^{2 m-1} \theta \cos ^{2 n-1} \theta d \theta$ and deduce that
$\int_{0}^{\pi / 2} \sin ^{n} \theta d \theta=\int_{0}^{\pi / 2} \cos ^{n} \theta d \theta=\frac{\frac{1}{2} \Gamma\left(\frac{n+1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{n+2}{2}\right)}$.
(b) Prove that $\Gamma(\mathrm{n}) \Gamma\left((1-\mathrm{n})=\frac{\pi}{\sin n \pi}\right.$.
(c) Show that $\int_{0}^{\infty} x^{m} e^{-a^{2} x^{2}} d x=\frac{1}{2 a^{m+1}} \Gamma\left(\frac{m+1}{2}\right)$ and hence deduce that

$$
\int_{o}^{\infty} \cos \left(x^{2}\right) d x=\int_{o}^{\infty} \sin \left(x^{2}\right) d x=1 / 2 \sqrt{\pi / 2} .
$$

$[5+5+6]$
2. (a) Prove that $(2 \mathrm{n}+1)\left(1-\mathrm{x}^{2}\right) P_{n}^{\prime}(\mathrm{x})=\mathrm{n}(\mathrm{n}+1)\left[\mathrm{P}_{n+1}(\mathrm{x})-\mathrm{P}_{n-1}(\mathrm{x})\right]$.
(b) Prove that $\left(1-\mathrm{x}^{2}\right) \mathrm{P}_{n}^{\prime}(\mathrm{x})=(\mathrm{n}+1)\left[\mathrm{x}_{n}(\mathrm{x})-\mathrm{P}_{n+1}(\mathrm{x})\right]$.
(c) Show that $\frac{n}{x} J_{n}(x)+J_{n}^{\prime}(x)=J_{n-1}(x)$.
3. (a) Show that the real and imaginary parts of an analytic function $f(z)=u(r, \theta)+i v(r, \theta)$ satisfy the Laplace equation in polar form $\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0$ and $\frac{\partial^{2} v}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} v}{\partial \theta^{2}}=0$ respectively.
(b) If u is a harmonic function, show that $\mathrm{w}=\mathrm{u}^{2}$ is not a harmonic function unless u is a constant. [8+8]
4. (a) Evaluate $\int_{c} \frac{\left(z^{2}-2 z-2\right)}{\left.\left(z^{2}+1\right)^{2}\right)^{2}} d z$ ahgre c is $|z-i|=1 / 2$ using Cauchy's integral formula.
(b) Evaluate $\left\{\left(z^{2}+3 z+2\right) \mathrm{dz}\right.$ where C is the arc of the cycloid $x=a(\theta+\sin \theta)$, $y=a(1-\cos \theta)$ between the points $(0,0)$ to $(\pi \mathrm{a}, 2 \mathrm{a})$.
5. (a) State and prove Taylor's theorem.
(b) Find the Laurent series expansion of the function $\frac{z^{2}-6 z-1}{(z-1)(z-3)(z+2)}$ in the region $3<|z+2|<5$.
6. (a) Find the poles and residue at each pole of the function $\frac{2 z+1}{\left(1-z^{4}\right)}$.
(b) Evaluate $\int_{C} \frac{\sin z}{z \cos z} d z$ where C is $|z|=\pi$ by residue theorem.
7. (a) Show that $\int_{0}^{2 \pi} \frac{d \theta}{a+b \sin \theta}=\frac{2 \pi}{\sqrt{a^{2}-b^{2}}}, \mathrm{a}>\mathrm{b}>0$ using residue theorem.
(b) Evaluate by contour integration $\int_{0}^{\infty} \frac{d x}{\left(1+x^{2}\right)}$.
8. (a) Under the transformation $w=1 / \mathrm{z}$, find the image of the circle $|z-2 i|=2$.
(b) Under the transformation $w=\frac{z-i}{1-i z}$, find the image of the circle $|z|=1$ in the w-plane.

