II B.Tech I Semester(R05) Supplementary Examinations, May/June 2010 SWITCHING THEORY AND LOGIC DESIGN
(Common to Electrical \& Electronic Engineering, Electronics \& Instrumentation Engineering, Bio-Medical Engineering, Electronics \& Control Engineering, Electronics \& Computer Engineering and Instrumentation \& Control Engineering)
Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks
$\star \star \star \star \star$

1. Convert the following to Decimal and then to Binary.
(a) 1011_{16}
(b) $A B C D_{16}$
(c) 7234_{8}
(d) 7766_{8}
(e) 128_{10}
(f) 720_{10}.
2. (a) Reduce the following Boolean expressions.
i. $\left((\mathrm{AB})^{\prime}+\mathrm{A}^{\prime}+\mathrm{AB}\right)^{\prime}$
ii. $\mathrm{AB}+(\mathrm{AC})^{\prime}+\mathrm{AB}{ }^{\prime}+\mathrm{C}(\mathrm{AB}+\mathrm{C})$
iii. $\left(\left(A B^{\prime}+A B C\right)^{\prime}+A\left(B+A B^{\prime}\right)\right)^{\prime}$
iv. $A B+A(B+C)+B(B+C)$
(b) Obtain the Dual of the following Boolean expressions.
i. $x^{\prime} y^{\prime}+x y+x^{\prime} y$
ii. $x y^{\prime}+y^{\prime} z^{\prime}+x^{\prime} z^{\prime}$
iii. $x^{\prime}+x y+x z^{\prime}+x y^{\prime} z^{\prime}$
iv. $(x+y)\left(x+y^{\prime}\right)$
3. (a) Simplify the Boolean function using K-mak
$\mathrm{F}=\sum m(0,1,2,4,7,8,12,14,15,16,17,18,20,24,28,30,31)$
(b) Simplify the Boolean expression using K-mqap
$\mathrm{F}=(\bar{A})+(A B)+(A B \bar{D})+d A \bar{B} \bar{D})+(C)$
4. Implement the following Boolean function by a Hazard free OR-AND network.
$f=\sum m(1,3,4,5)$ and explain incletail what are the Hazards encountered in implementing the above function. [16]
5. Write a brief note on:
(a) Architecture of PLDs
(b) Capabilation and the limitations of threshold gates.

$$
[8+8]
$$

6. (a) Explain the following
i. Race-around condition in flip flop
ii. J-K Master slave flip flop
iii. Excitation table for flip flops.
(b) Draw the state diagram of modulo-4 up/ down counter. Design its circuit using J-K flip flops.
7. A clocked sequential circuit is provided with a single input x and single output Z. Whenever the input produce a string of pulses 111 or 000 and at the end of the sequence it produce an output $\mathrm{Z}=1$ and overlapping is also allowed.
(a) Obtain State - Diagram.
(b) Also obtain state - Table.
(c) Find equivalence classes using partition method \& design the circuit using D - flip-flops. [4+4+8]
8. (a) Draw the ASM chart for the following state transistion, start from the initial state T_{1}, then if $\mathrm{xy}=00$ go to T_{2}, if $\mathrm{xy}=01$ go to T_{3}, if $\mathrm{xy}=10$ go to T_{1}, other wise go to T_{3}.
(b) Show the exit paths in an ASM block for all binary combinations of control variables x, y and z, starting from an initial state.
[8+8]
