II B.Tech I Semester(R05) Supplementary Examinations, May/June 2010 PROBABILITY THEORY AND STOCHASTIC PROCESS

(Common to Electronics \& Communication Engineering and Electronics \& Computer

 Engineering)Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks *****

1. (a) Define probability based on set theory and fundamental axioms.
(b) When two dice are thrown, find the probability of getting the sums of 10 or 11 .
2. (a) Define and give the concept of random variable.
(b) Define conditional distribution and density functions and explain their properties.
3. (a) State and prove properties of variance of a random variable
(b) Let X be a random variable defined by the density function $f_{X}(x)=\left\{\begin{array}{cc}\frac{\pi}{16} \cos (\pi x / 8) & -4 \leq x \leq 4 \\ 0 & \text { elsewhere }\end{array}\right.$ Find $\mathrm{E}[3 \mathrm{X}]$ and $\mathrm{E}\left[X^{2}\right]$.
4. (a) State and prove the properties of conditional density functions.
(b) Find the probability density function of $\mathrm{W}=\mathrm{X}+\mathrm{Y}$ where the densities of X and Y are given by $f_{X}(x)=u(x+1)-u(x)$
$f_{Y}(y)=\frac{1}{2}[u(y+1)-u(y-1)]$.
5. 6. Let X be a random variable that has a mean value.
(a) $\overline{\mathrm{X}}=3$ and variable $\sigma \mathrm{x}^{2}=2$. Let anothetrandom variable defined by
$\mathrm{Y}=-6 \mathrm{x}+22$.
i. Find $R_{X Y}$, Correlation of X and Y .
ii. are X and Y orthogonal
iii. are X and Y correlatéd.
(b) Find the mean value of a sum of N weighted random variables.
1. (a) Define various randon processes
(b) Differentiate between stationary \& ergodic random processes.
(c) Show that the random process $\mathrm{X}(\mathrm{t})=\mathrm{A} \cos \left(\omega_{0} \mathrm{t}+\theta\right)$ is wide sense stationary assume A and ω_{o} are constants and θ is a uniformly distributed random variable on the interval $(0,2 \Pi)$.
2. (a) If the PSD of $\mathrm{X}(\mathrm{t})$ is $\operatorname{Sxx}(\omega)$. Find the PSD of $\frac{d x(t)}{d t}$
(b) Prove that $S_{x x}(\omega)=S_{x x}(-\omega)$
(c) If $R(\tau)=a e^{-b}|\tau|$. Find the spectral density function, where a and b are constants. $\quad[5+5+6]$
3. (a) Define the following random processes
i. Band Pass
ii. Band limited
iii. Narrow band.

$$
[3 \times 2=6]
$$

(b) A Random process $\mathrm{X}(\mathrm{t})$ is applied to a network with impulse response $\mathrm{h}(\mathrm{t})=\mathrm{u}(\mathrm{t}) \exp (-\mathrm{bt})$ where $\mathrm{b}>0$ is ω constant. The Cross correlation of $\mathrm{X}(\mathrm{t})$ with the output $\mathrm{Y}(\mathrm{t})$ is known to have the same form:
$R_{X Y}(\tau)=\mathrm{u}(\tau) \tau \exp (-\mathrm{b} \tau)$
i. Find the Auto correlation of $\mathrm{Y}(\mathrm{t})$
ii. What is the average power in $\mathrm{Y}(\mathrm{t})$.

