## II B.Tech I Semester(R07) Supplementary Examinations, May/June 2010 MATHEMATICS-II <br> (Common to Civil Engineering and Bio-Technology)

Time: 3 hours
Max Marks: 80

## Answer any FIVE Questions <br> All Questions carry equal marks

*****

1. (a) Find the rank of the matrix $A=\left[\begin{array}{cccc}5 & 6 & 7 & 8 \\ 6 & 7 & 8 & 9 \\ 11 & 12 & 13 & 14 \\ 16 & 17 & 18 & 19\end{array}\right]$ by reducing the matrix to echelon form.
(b) Solve completely the system of equations.

$$
\begin{aligned}
& x_{1}+x_{2}-2 x_{3}+3 x_{4}=0 \\
& x_{1}-2 x_{2}+x_{3}-x_{4}=0 \\
& 4 x_{1}+x_{2}-5 x_{3}+8 x_{4}=0 \\
& 5 x_{1}-7 x_{2}+2 x_{3}-x_{4}=0
\end{aligned}
$$

2. (a) Show that the sum of eigen values of a square matrix $A$ is trace $A$ and the product of eigen values is $\operatorname{det} \mathrm{A}$.
(b) If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, find $\mathrm{A}^{2}, \mathrm{~A}^{3}, \mathrm{~A}^{-1}, \mathrm{~A}^{-2}$ using Cayley-Hamilton theorem.
3. Reduce the quadtratic form $x^{2}-4 y^{2}+6 z^{2}+2 x y-4 x z+2 w^{2}-6 \not z w$ into sum of squares.
4. (a) Obtain the fourier series expansion of $\mathrm{f}(\mathrm{x})=\mathrm{x}$ in $0<x<L$
(b) Find the fourier half-range sine series expansion of the function

$$
\begin{array}{rll}
f(x) & =\frac{\pi x}{4} & \text { for } \tag{8+8}
\end{array} \quad 0 \leq x \leq \frac{\pi}{2},
$$

5. (a) Derive the partial differentiar equation by eliminating the constants from the equation $2 z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$
(b) solve the PDE : $z^{2}=1+p^{2}+q^{2}$
(c) Find the complete integral of $p e^{y}=q e^{x}$
6. An insulated rod of length $l$ has its ends A and B maintained at $0^{\circ}$ and $100^{\circ} \mathrm{c}$ respectively until steady state conditigns prevail. If B is suddenly reduced to $0^{\circ} \mathrm{c}$, find the temperature at a distance x from A at timet.
7. (a) Evaluate $\mathrm{F}_{c}\left[\mathrm{x}^{n-1}\right]$ if $0<\mathrm{n}<1$. Deduce that $\frac{1}{\sqrt{x}}$ is self reciprocal under fourier cosine transform.
(b) Find the finite fourier cosine transform of $\mathrm{f}(\mathrm{x})$ if $\mathrm{f}(\mathrm{x})= \begin{cases}1 & \text { if } 0<x<\frac{\pi}{2} \\ -1 & \text { if } \frac{\pi}{2}<x<\pi\end{cases}$
8. (a) If $\mathrm{Z}\left\{\mathrm{u}_{n}\right\}=\bar{u}(z)$, then prove that $\mathrm{Z}\left(\mathrm{u}_{n-k}\right)=\mathrm{Z}^{-k} \bar{u}(z)(\mathrm{k}>0)$
(b) If $\mathrm{Z}\left\{\mathrm{u}_{n}\right\}=\bar{u}(z)$, then prove that $\mathrm{Z}\left(\mathrm{nu}_{n}\right)=-\mathrm{Z} \frac{\partial}{\partial z}\{u \overline{(z)\}}$
(c) Find $Z^{-1}\left\{\frac{z}{(z-1)(z-2)}\right\}$
