II B.Tech I Semester(R07) Supplementary Examinations, May/June 2010 ELECTRICAL AND ELECTRONICS ENGINEERING (Common to Civil Engineering and Mechanical Engineering)

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
All Questions carry equal marks

1. When a DC voltage is applied to a capacitor, the voltage across its terminals is found to build up in accordance with $\mathrm{V}_{C}=50\left(1-\mathrm{e}^{-100 t}\right)$. After a lapse of 0.01 seconds, the current flow is equal to 2 mA :
(a) Find the value of capacitance.
(b) How much energy is stored in the electric field by that time?
2. (a) Derive an equation of induced EMF in a DC machine.
(b) A 6 -pole lap wound armature has 840 conductors and flux per pole of 0.018 webers. The generator is run at 1200 rpm . Calculate emf generated.
3. (a) Explain the basic principle of operation of single phase transformer.
(b) A $200 \mathrm{KVA}, 3300 / 240 \mathrm{~V}, 50 \mathrm{~Hz}$ single phase transformer has 80 turns on the/secondary winding. Assuming an ideal transformer, Calculate:
i. primary and secondary currents on full load
ii. The maximum value of flux
iii. The number of primary turns.
4. The data obtained on $100 \mathrm{KVA}, 1100 \mathrm{~V}, 3$-phase alternator is:

DC resistance test: E between lines $=6 \mathrm{~V}$ dc, 1 in lines $=10 \mathrm{~A} \mathrm{dc}$
O.C test: field current $=12.5 \mathrm{~A}$, Voltage between lines $=420 \mathrm{~V}$

SC test: field current $=12.5 \mathrm{~A}$. line cuârent $=$ rated value.
Calculate the voltage regulation of alternator at 0.8 power factor lagging.
5. The moving coil voltmeter has a resistance of 10,000 ohms, dimensions of the coil is $3 \mathrm{~cm} * 3 \mathrm{~cm}$, number of turns on the coil is 100 ; flux density in the air gap is $80 * 10-3 \mathrm{~Wb} / \mathrm{m}^{2}$, Spring control constant is $30^{*} 10^{-7} \mathrm{Nm} /$ degree. Caliculate the deflection produced By 200 V .
6. (a) Describe the action of PN junction diode under forward bias and reverse bias.
(b) Expldin V -l characteristics of a PN junction diode.
7. (a) What is a Bipolar junction transistor? How are its terminals named?
(b) Explain the operation of NPN and PNP transistors.
8. (a) Discuss the behavior of the electron when electronic and magnetic fields are applied in
i. parallel and
ii. perpendicular to each other.
(b) An electron having some initial velocity V_{0} of $5.93 \times 10^{3} \mathrm{~m} / \mathrm{sec}$, enter a magnetic field of density ' B ' of $0.05 \mathrm{wb} / \mathrm{m}^{2}$ at an angle of 45^{0} to the field. Find time period ' t ' for one revolution $\mathrm{e}=1.62$ $\times 10^{-19} \mathrm{cb}, \mathrm{m}=9.11 \times 10^{-13} \mathrm{~kg}$.

