II B.Tech I Semester(R07) Supplementary Examinations, May/June 2010 ELECTROMAGNETIC FIELDS

(Common to Electrical & Electronic Engineering and Electronics & Control Engineering) Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. Find the electric field intensity produced by a point charge distribution at P(1,1,1) caused by four identical 3 nc point charges located at $P_1(1,1,0)$, $P_2(-1,1,0)$, $P_3(-1,-1,0)$ and $P_4(1,-1,0)$. [16]
- 2. Let V=2xy² z³ and $\varepsilon = \varepsilon_0$ Given the point P(1,2,-1) then find:
 - (a) V at P
 - (b) E at P
 - (c) ρ_v at P
 - (d) The equation stream line passing through P.
- 3. A parallel plate capacitor has a plate area of 1.5 Sq.m. and a plate separation of 5 mm. There are two dielectrics in between the plates. The first dielectric has a thickness of 3 mm with a relative permittivity of 6 and the second has a thickness of 2 mm with relative permittivity 4. Find the capacitance. [16]
- 4. Derive the boundary condition for the magnetic field at the interface between two magnetic mediums with and without surface current at the interface. [16]
- 5. Describe the applications of amperes circuital law.
- 6. (a) Derive an expression for the force between parallel wires carrying currents in the same direction.
 - (b) A galvanometer has a rectangular coil suspended in a radial magnetic field which acts across the plane of the coil. The coil 0.01 m by 0.01m has 1000 turns and the flux density is 3 wb/m². Find the torque on the coil for a current of 10mA. [8+8]
- 7. (a) Derive an expression for the magnetic field strength H about a long parallel wire using vector potential A.
 - (b) Given magnetic field intensit $\frac{J_o}{3a\rho} \left(\rho^2 a^2\right) a_{\phi}$ due to a current carrying conductor (Current direction along a_2). Find the magnetic potential in this region.

[8+8]

[16]

[16]

- 8. (a) Write and explain differential and integral form of Maxwell's equations for fields varying harmonically with times.
 - (b) A parallel plate capacitor with plate area of 5 cm² and plate separation of 3mm has a voltage 50 sin 10³ t volts applied to its plats. Calculate the displacement current assuming $\varepsilon = 2\varepsilon_0$. [8+8]

 $\mathbf{R7}$