II B.Tech I Semester(R07) Supplementary Examinations, May/June 2010 ELECTROMAGNETIC FIELDS

(Common to Electrical \& Electronic Engineering and Electronics \& Control Engineering)

 Time: 3 hours
Answer any FIVE Questions
 All Questions carry equal marks

1. Find the electric field intensity produced by a point charge distribution at $\mathrm{P}(1,1,1)$ caused by four identical 3 nc point charges located at $\mathrm{P}_{1}(1,1,0), \mathrm{P}_{2}(-1,1,0), \mathrm{P}_{3}(-1,-1,0)$ and $\mathrm{P}_{4}(1,-1,0)$.
2. Let $\mathrm{V}=2 \mathrm{xy}^{2} \mathrm{z}^{3}$ and $\varepsilon=\varepsilon_{0}$ Given the point $\mathrm{P}(1,2,-1)$ then find:
(a) V at P
(b) E at P
(c) ρ_{v} at P
(d) The equation stream line passing through P .
3. A parallel plate capacitor has a plate area of 1.5 Sq.m. and a plate separation of 5 mm . There are two dielectrics in between the plates. The first dielectric has a thickness of 3 mm with a delative permittivity of 6 and the second has a thickness of 2 mm with relative permittivity 4 . Find the capacitance. [16]
4. Derive the boundary condition for the magnetic field at the interface between two magnetic mediums with and without surface current at the interface.
5. Describe the applications of amperes circuital law.
6. (a) Derive an expression for the force between parallel wires carrying currents in the same direction.
(b) A galvanometer has a rectangular coillsuspended in a radial magnetic field which acts across the plane of the coil. The coil 0.01 m by 0.01 m has 1000 turns and the flux density is $3 \mathrm{wb} / \mathrm{m}^{2}$. Find the torque on the coil for a current of 10 mA .
7. (a) Derive an expression for the magnetic field strength H about a long parallel wire using vector potential A.
(b) Given magnetie field intensit $\frac{J_{o}}{3 a \rho}\left(\rho^{2}-a^{2}\right) \mathrm{a}_{\phi}$ due to a current carrying conductor (Current direction along a_{-}. Find the magnetic potential in this region.
8. (a) Write and explain differential and integral form of Maxwell's equations for fields varying harmonically with times.
(b) A parallel plate capacitor with plate area of $5 \mathrm{~cm}^{2}$ and plate separation of 3 mm has a voltage 50 $\sin 10^{3} \mathrm{t}$ volts applied to its plats. Calculate the displacement current assuming $\varepsilon=2 \varepsilon_{0}$. [8+8]
