II B.Tech I Semester(R07) Supplementary Examinations, May/June 2010 PROBABILITY THEORY AND STOCHASTIC PROCESSES

 (Common to Electronics \& Communication Engineering and Electronics \& Computer

 (Common to Electronics \& Communication Engineering and Electronics \& Computer Engineering)

Time: 3 hours

Answer any FIVE Questions
 All Questions carry equal marks *****

1. (a) Explain the terms Joint probability and Conditional probability.
(b) Show that Conditional probability satisfies the three axioms of probability.
(c) Two cards are drawn from a 52 -card deck (the first is not replaced):
i. Given the first card is a queen. What is the probability that the second is also a queen?
ii. Repeat part (i) for the first card a queen and second card a 7.
iii. What is the probability that both cards will be the queen?
2. (a) What is gaussian random variable? Develop an equation for gaussian distribution function.
(b) Verify that the following is a distribution function:

$$
\begin{align*}
\mathrm{F}(\mathrm{x}) & =0 & & \text { for } \mathrm{x}<-\mathrm{a}, \\
& =1 / 2(\mathrm{x} / \mathrm{a}+1) & & \text { for }-\mathrm{a}<=\mathrm{x}<=\mathrm{a}, \text { and } \\
& =1 & & \text { for } \mathrm{x}>\mathrm{a} .
\end{align*}
$$

3. (a) A discrete random variable X have values $\mathrm{x}=-1,0,1$ and 2 with despective probabilities $0.1,0.3$, 0.4 and 0.2 . X is transformed to $\mathrm{Y}=2-\mathrm{X}^{2}+\mathrm{X}^{3} / 3$. Find the density function of Y .
(b) If X is the number scored in a throw of a fair dje, show that the Chebyshev's inequality gives $P[|X-m|>2.5]<0.47$ where m is the mean of X , while the actral probability is zero.
4. (a) Explain the conditional distribution and density function of two random variables X and Y .
(b) The joint probability density function of two random variables X and Y is given by
$\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{a}\left(2 \mathrm{x}+\mathrm{y}^{2}\right), \quad 0 \leq \mathrm{x} \leq 2,2 \leq \mathrm{y} \leq 4$
$=0$,
elsewhere
Find:
i. value of ' a '
ii. $\mathrm{P}(\mathrm{X} \leq 1, \mathrm{Y}>3)$.
5. (a) Write the expression for expected value of a function of random variables and prove that the mean value of a weighted sum of random variables equals the weighted sum of mean values.
(b) X is a random variable with mean $\bar{X}=3$, variance $\sigma_{X}^{2}=2$.
i. Determine the second moment of X about origin
ii. Determine the mean of random variable $\mathrm{y}=$ where $\mathrm{y}=-6 \mathrm{X}+22$.
6. (a) Prove that autocorrelation function of a random process is even function of τ.
(b) Prove that $\mathrm{R}_{\mathrm{XX}}(\tau)=R_{X X}(0)$.
7. The auto correlation function of a random process $\mathrm{X}(\mathrm{t})$ is $R_{X X}(\tau)=3+2 \exp \left(-4 \tau^{2}\right)$.
(a) Find the power spectrum of $\mathrm{X}(\mathrm{t})$.
(b) What is the average power in $\mathrm{X}(\mathrm{t})$
(c) What fractional power lies in the frequency band $\frac{-1}{\sqrt{2}} \leq \omega \leq \frac{1}{\sqrt{2}}$. $[6+4+6]$
8. (a) Explain how the available noise power in an electronic circuit can be estimated.
(b) What are the different noise sources that may be present in an electron devices?
