

II B.Tech I Semester(R07) Supplementary Examinations, May/June 2010 SIGNALS AND SYSTEMS

(Common to Electronics & Communication Engineering, Electronics & Instrumentation Engineering and Electronics & Control Engineering) Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

(a) The two periodic functions $f_1(t)$ and $f_2(t)$ with zero dc components have arbitrary waveforms 1. with periods T and $\sqrt{2T}$ respectively. Show that the component in $f_1(t)$ of waveform $f_2(t)$ is zero in the interval $(-\alpha < t < a)$.

(b) complex Sinusoidal signal x(t) has the following components. $\begin{array}{l} \operatorname{Re}\{x(t)\} = x_{R}(t) = \operatorname{ACos}(\omega t + \theta) \\ \operatorname{I}_{m}\{x(t)\} = x_{I}(t) = \operatorname{ASin}(\omega t + \theta) \end{array}$ The amplitude of x(t) is given by the square root of $x_R^2(t) + x_I^2(t)$. Show that this amplitude equals A and is therefore independent of the phase angle θ . [8+8]

- (a) Explain the concept of generalized Fourier series representation of signal f(t). 2. CU
 - (b) State the properties of Fourier series.
- 3. (a) Explain the concept of continuous spectrum.
 - (b) Describe the following functions:
 - i. Unit Step function
 - ii. Dirac Delta function
 - iii. Sampling function

Obtain Fourier Transform and draw the spectrum for above functions.

[4+12]

[8+8]

[8+8]

[8+8]

- 4. The input and the output of a causal LTI system are related by the differential equation: $\frac{d^2y(t)}{dt^2}$ + $6\frac{dy(t)}{dt} + 8y(t) = 2x(t)$
 - (a) Find the impulse response of this system
 - (b) What is response of this system if $x(t) = t e^{-2t} x(t)$. [8+8]
- (a) Explain briefly detection of periodic signals in the presence of noise by correlation. 5.
 - (b) Explain briefly extraction of a signal from noise by filtering.

6. (a) Let $\mathbf{x}(t)$ be a signal with Nyquist rate ω_0 . Also let $\mathbf{y}(t) = \mathbf{x}(t) \mathbf{p}(t-1)$, where $p(t) = \sum_{n=1}^{\infty} \delta_1(t - nT)$, and

Specify the constraints on the magnitude and phase of the frequency response of a filter that gives x(t) as its output when y(t) is the input.

- (b) Explain the Sampling theorem for Band Limited Signals with analytical proof.
- 7. (a) State the properties of the ROC of Laplace Transforms.
 - (b) Determine the function of time x(t) for each of the following Laplace transforms and their associated regions of convergence. |8+8|

i.
$$\frac{(s+1)^2}{s^2-s+1}$$
 Re{S} > 1/2
ii. $\frac{s^2-s+1}{(s+1)^2}$ Re{S} > -1

- (a) Determine the unilateral Z transform of the following signals, and specify the corresponding 8. Regions of convergence:
 - i. $x_1[n] = \left(\frac{1}{4}\right)^n u(n+5)$ ii. $x_2[n] = \left(\frac{1}{2}\right)^{|n|}$

iii.
$$x_3[n] = \delta[n+3] + \delta[n] + 2^n u[-n]$$

(b) Give the discrete time signal representation using complex exponential and sinusoidal components. [12+4]