Code No: R7210502

II B.Tech I Semester(R07) Supplementary Examinations, May/June 2010 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE

(Common to Computer Science & Engineering, Information Technology and Computer Science & Systems Engineering)

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Show that the principal disjunctive normal form of the formula: $P \lor (\sim P \to (Q \lor (\sim Q \to R)))$ is: $\Sigma(1, 2, 3, 4, 5, 6, 7)$.
 - (b) Show that the principal conjunctive normal form of the formula: $(P \to (Q \land R)) \land (\sim P \to (\sim Q \land \sim R))$ is Π (1, 2, 3, 4, 5, 6).

[8+8]

- 2. (a) Prove the implication: $P \Rightarrow (\sim P \rightarrow Q)$ by automatic theorem.
 - (b) Show that $(\forall x) (P(x) \to Q(x)) \land (\forall x) (Q(x) \to R(x)) \Rightarrow (\forall x) (P(x) \to R(x))$.

[8+8]

- 3. (a) Explain the various types of functions with suitable examples.
 - (b) Let the relation $R = \{(a, b), (a, c), (b, a), (b, c), (c, d), (d, a)\}$ on the set $\{a, b, c, d\}$. What is the transitive closure of R? [8+8]
- 4. (a) What is a group? What are properties of a group? Explain them with an example each.
 - (b) Show that any group G is abelian iff $(ab)^2 = a^2b^2$ for all a, $b \in G$.

[8+8]

- 5. A mother distributes 5 different apples among 8 children;
 - (a) How many ways can this be done if each child receives at most one apple?
 - (b) How many ways can this be done if there is no restriction on the number of apples a child can receive?
- 6. Find all solutions of the recurrence relation $a_n = -3$ $a_{n-1} + 2n$. What is the solution with $a_1 = 3$. [16]
- 7. (a) A plane graph G is self-dual if it is isomorphic to its dual. For n=2, 3, 4, 5, fine a self-dual graph on n vertices.
 - (b) Show that K₅ is planar.

[6+10]

- 8. (a) How many non isomorphic directed simple graphs are there with 3 vertices and with 4 vertices?
 - (b) Show that if g is self-Complementary simple graph with v vertices, then $v \equiv 0$ or 1 (mod 4). [8+8]
