II B.Tech I Semester(R07) Supplementary Examinations, May/June 2010 ELECTROMAGNETIC WAVES AND TRANSMISSION LINES

 (Electronics \& Instrumentation Engineering)Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) State coulomb's law in vectorial form and list out its applications and limitations.
(b) A charge, $\mathrm{Q}_{1}=10 \mathrm{nC}$ is at the origin in free space. If the x -component of E is to be zero at the point $(3,1,1)$, what charge, Q_{t} should be kept at the point $(2,0,0)$?
2. (a) Define inductance of a coil and explain the requirements of inductor coils.
(b) The radius of inner and outer conductors of a coaxial cable are 2 mm and 6 mm respectively and $\mu=\mu_{0}$. Find the inductance of 10 m length.
3. (a) Show that the conduction and displacement currents are always displaced from each other by 90° in time for a sinusoidally varying field.
(b) Express the fields $E=10.0 \sin x \sin t a_{y}$ and $H=\frac{10}{\mu_{o}} \cos x \sin t a_{z}$ in phasor form. [8+8]
4. (a) State Poynting theorem and prove it.
(b) The magnetic field, \mathbf{H} of a plane wave has a magnitude ${ }^{\circ} 5 \mathrm{~mA} / \mathrm{m}$ in a medium defined by ϵ_{r} $=4, \mu_{r}=1$.
i. Determine the average power flow.
ii. The maximum energy density in the plane wave
5. (a) Explain the normal incidence of uniform plane wave at plane conducting boundary.
(b) Explain the oblique incidence of uniform plane wave at plane conducting boundary.
6. Obtain the expression for the fieldcomponents of an electromagnetic wave propagating between a pair of perfectly conducting planes.
7. (a) Derive the expression for \propto interms of primary constants of a line?
(b) A copper wire transmission line operates at 1 MHz . For copper $\mu=\mu_{0}, \varepsilon=\varepsilon_{0}, \sigma=5.8 \times 10^{7} \mathrm{mho} / \mathrm{m}$. The radius of the wire $\mathrm{a}=2.0 \mathrm{~mm}$. Find dc and ac resistances of the line.
8. Write short notes on:
(a) Quarter wave line $(\lambda / 4)$
(b) Smith chart.
