Code No: R7212302

Max Marks: 80

II B.Tech I Semester(R07) Supplementary Examinations, May/June 2010 THERMODYNAMICS FOR BIOTECHNOLOGISTS (Bio-Technology)

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks * * * * *

- 1. (a) What are different forms of energy . Explain about them.
 - (b) Derive the equations used for solution of energy balance problems. What is the basis for this derivation? Explain. [16]
- 2. (a) Klebsiella aerogenes is produced in aerobic culture with NH3 as nitrogen source. The biomass contains 8% ash, 0.40 gm biomass is produced for each gm glycerol consumed and no major metabolic products are formed. What is the oxygen requirement for this culture in mass terms? Y_s for glycerol is 4.7 Y_{xs} , max = 0.9 $C_{max}/w = 1.1$.
 - (b) Explain about product stiochiometry and theoretical oxygen demand.
- 3. With a neat sketch explain the P,T behavior of the pure substances?
- 4. A 1:3 N_2 H_2 mixture is fed in to the reactor where a 21 % conversion to NH_3 is achieved. NH_3 formed is separated and unconverted gases are recycled to the reactor with a fraction continuously purged off. The feed contains 0.2 parts of Argon to 100 parts of N_2 - H_2 mixture by volume. The tolerance limit for argon entering the reactor is assumed to be 5 parts per 100 parts of N_2 - H_2 mixture by volume. Calculate the
 - (a) the fraction recycle that must be continuously purged off

(b) the overall yield of NH_3 per 100 kmol of feed

[16]

[8+8]

[16]

- 5. Show that Gibb's energy is the generating function for other thermodynamic properties. [16]
- 6. (a) Show that $\ln \phi_i = \int_0^p (Z_i 1) \frac{dP}{p}$
 - (b) For nitrogen it has been found that Z= 1 0.36×10^{-2} P (P is pressure) Calculate the fugacity of nitrogen at 10 atm. [8+8]
- 7. (a) A binary system in equilibrium is represented by the equation $\frac{\Delta G}{RT} = x_1 \ln x_1 + x_2 + \frac{G^E}{RT}$. Show that the solubility of the system requires that $\frac{d^2(G^E/RT)}{dx_1^2} > -\frac{1}{x_1 x_2}$ (at constant T,P).
 - (b) The excess Gibbs energy function for a binary system is represented by $\frac{G^E}{RT} = x_1 \ln \gamma_1 + x_2 \ln \gamma_2.$ Show that the condition for stability is $\frac{d \ln \gamma_1}{d x_1} > -\frac{1}{x_1}.$ (at constant T,P). [8+8]
- 8. Acetic acid is esterified in the liquid phase with ethanol at 100⁰C and atmospheric pressure to produce ethyl acetate and water according to the reaction CH₃COOH (l)+C₂H₅OH (l)- - - - >CH₃COOC₂H₅ (l)+H₂O (l)
 - (a) Equilibrium constant at 298K is 6.5266.Calculate the equilibrium constant value at 373K.
 - (b) If initially there is one mole each of acetic acid and ethanol, estimate the mole fraction of ethyl acetate in the reacting mixture at equilibrium. [8+8]
