II B.Tech I Semester(RR) Supplementary Examinations, May/June 2010 MATHEMATICS-II
(Common to Civil Engineering, Electrical \& Electronic Engineering, Mechanical Engineering, Electronics \& Communication Engineering, Computer Science \& Engineering, Electronics \& Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics \& Control Engineering, Computer Science \& Systems Engineering, Electronics \& Computer Engineering and Instrumentation \& Control Engineering) Time: 3 hours

Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Find the rank of the matrix by reducing it to the normal form.

$$
\left[\begin{array}{cccc}
6 & 1 & 3 & 8 \\
4 & 2 & 6 & -1 \\
10 & 3 & 9 & 7 \\
1 b & 4 & 12 & 15
\end{array}\right]
$$

(b) Find whether the following set of equations are consistent if so, solve them.

$$
\begin{gathered}
2 x-y+3 z-9=0 \\
x+y+z=6 \\
x-y+z-2=0
\end{gathered}
$$

2. Diagonalize the matrix A where $\mathrm{A}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -1 & \beta\end{array}\right]$
3. (a) Define:
i. Spectral Matrix
ii. Quadratic Form
iii. Canonical form.
(b) Reduce the quadratic form $3 x^{2}+5 y^{2}+3 z^{2}-2 y z+2 z x-2 x y$ to the canonical form.
4. (a) Define a periodic function. Find the Fourier expansion for the function $f(x)=x-x^{2},-1<x<1$.
(b) Provethat the function $\mathrm{f}(\mathrm{x})=\mathrm{x}, 0 \leq \mathrm{x} \leq \pi$ can be expanded in a series of sines as $x=2\left[\frac{\sin x}{1}-\frac{\sin 2 x}{2}+\frac{\sin 3 x}{3}-\right.$ [6].
5. (a) Form the partial differential equation by eliminating the arbitrary function f from $x y+y z+z x$ $=f(z /(x+y))$.
(b) Solve the partial differential equation $(3 z-4 y) p+(4 x-2 z) q=2 y-3 x$.
(c) Solve the partial differential equation $\left(y^{2}+z^{2}\right) p-x y q+z x=0$.
6. Solve the boundary value problem
$u_{t t}=a^{2} u_{x x} ; \quad 0<x<L ; \quad t>0$
with $\mathrm{u}(0, \mathrm{t})=0 ; \mathrm{u}(\mathrm{L}, \mathrm{t})=0$ and
$\mathrm{u}(\mathrm{x}, 0)=0 ; u_{t}(x, 0)=\sin ^{3}(\pi x / 1)$.
7. Solve $\frac{\partial u}{\partial t}=2 \frac{\partial^{2} u}{\partial x^{2}}, 0<x<4, t>0$ using Transfomrs
given $\mathrm{u}(0, \mathrm{t})=0, \mathrm{u}(4, \mathrm{t})=0$,
$\mathrm{u}(\mathrm{x}, 0)=3 \sin \pi x-2 \sin 5 \pi x$.
8. (a) Find the Z transform of $\sin (3 \mathrm{n}+5)$
(b) Find $Z^{-1}\left[\frac{z}{z^{2}+11 z+24}\right]$
