II B.Tech I Semester(RR) Supplementary Examinations, May/June 2010 PROBABILITY THEORY AND STOCHASTIC PROCESS
 (Electronics \& Communication Engineering)

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks $\star \star \star \star \star$

1. (a) Distinguish between mutually exclusive events and independent events.
(b) A letter is known to have come either from LONDON or CLIFTON. On the postmark only the two consecutive letters 'ON' are legible. What is the Chance that it came from London? Give step-by-step answer.
(c) Show that the chances of throwing six with 4,3 or 2 dice respectively are as 1:6:18.
2. (a) Derive an expression for the average value and variance associated with the Gaussian probability density function.
(b) The average life of a certain type of electric club Rs. 1200 hours What percentage of this type of bulbs is expected o fail in the first 800 hours of working? What percentage is expected to fail between 800 is 1000 hours? Assume a normal distribution with $\sigma \neq 200$ hours.
3. (a) Find the density function whose characteristic function is $\exp (-|t|)$
(b) Let X be a continuous random variable with $\operatorname{pdf} \mathrm{f}_{\mathrm{X}}(\mathrm{x})=8 / x^{3}, x>2$. Find $E[W]$ where $W=X / 3$

$$
[8+8]
$$

4. (a) State and prove properties of power density spectrum.
(b) Calculate the PSD of a stationary randomprocess for which the Autocorrelation is $\mathrm{R}_{\mathrm{xx}}(\tau)=\sigma^{2} \cdot e^{-\alpha|\lambda|}$

$$
[8+8]
$$

5. (a) Derive the relation between PSDs of input and output random process of an LTI system.
(b) $\mathrm{X}(\mathrm{t})$ is a stationary random process with zero mean and auto correlation $R_{X X}(\tau) e^{-2|\tau|}$ is applied to a system of function $H(w)=\frac{1}{j w+2} \quad$ Find mean and PSD of its output.
6. (a) Explain how the available noise power in an electronic circuit can be estimated.
(b) What are the different noise sources that may be present in an electron devices?
7. (a) An amplifier has input and output impedances of $75 \mathrm{ohm}, 60 \mathrm{~dB}$ power gain, and a noise equivalent bandwidth of 15 KHz . When a 75Ω resistor at $290 K$ is connected to the input, the output rms noise voltage is 75 microvolt. Determine the effective noise temperature of the amplifier assuming that the meter is impedance matched to the amplifier.
(b) List the devices in which narrowband noise can be present.
8. A Discrete Message Source (DMS) has four symbols x_{1}, x_{2}, x_{3} and x_{4} with probabilities $p\left(x_{1}\right)=$ $0.4, p\left(x_{2}\right)=0.3, p\left(x_{3}\right)=0.2$, and $p\left(x_{4}\right)=0.1$,
(a) Calculate $\mathrm{H}(\mathrm{x})$.
(b) Find the amount of information contained in the messages $x_{1} x_{2} x_{3} x_{4}$ and $x_{4} x_{3} x_{2} x_{1}$, and compare with $\mathrm{H}(\mathrm{x})$ obtained in part (a).
