Code No: RR210404

RR

II B.Tech I Semester(RR) Supplementary Examinations, May/June 2010 SIGNALS AND SYSTEMS

(Common to Electronics & Communication Engineering, Electronics & Instrumentation Engineering, Electronics & Control Engineering and Instrumentation & Control Engineering) Time: 3 hours Max Marks: 80

Α	nswer	any	FIVE	Ques	tions			
All	Quest	\mathbf{ions}	carry	equal	marks			
* * * * *								

1.	(a)	Write the significance of spectral analysis in communication systems.	[4M]
	(b)	Explain how a function can be approximated by a set of orthogonal functions.	[6M]
	(c)	Derive the expression by which the Mean square error can be evaluated.	[6M]
2.	Wit	h regard to Fourier series representation, justify the following statement.	
	(a)	Odd functions have only sine terms.	/ [5M]
	(b)	Even functions have no sine terms.	[5M]
	(c)	Functions with half-wave symmetry have only odd harmonics.	[6M]
3.	(a)	State and prove convolution and differentiation properties of Fourier Transforms. $[3+3+4]$	=10M]
	(b)	A signal $x(t)$ is given as $x(t)=6 \cos 10 \pi t$. This signal is sampled by an impulse train sampling frequency of the impulse train are 7 Hz and 14 Hz. Draw the spectra of the signal. Draw the spectra of the sampled signal with sampling frequency 7 Hz and 14 Hz.	n. The original [6M]
4.	(a)	Explain the difference between a time invariant system and time variant system? Write some tical cases where you can find the systems. What do you understand by the filter character of a linear system? Explain the condition of causality? $[2+2+4+2]$	e prac- eristics =10M]
	(b)	What is the effect of under sampling? \lor	[6M]
5.	(a)	Energies of signals $g_1(t)$ and $g_2(t)$ are Eg_1 and Eg_2 , respectively.	[3M]
		i. Show that in general, the energy of signal $g_1(t) + g_2(t)$ is not $Eg_1 + Eg_2$.	[3M]
		ii. Under what condition is the energy of $g_1(t) + g_2(t)$ equal to $Eg_1 + Eg_2$.	[3M]
		iii. Can the energy of the signal $g_1(t)+g_2(t)$ be zero? If so under what condition?	[2M]
	(b)	State and prove Rayleigh's energy theorem. [2+	6=8M]
6.	(a)	Let $R_{12}(\lambda)$ and $R_{21}(\lambda)$ denote the cross correlate function of two energy signals $g_1(t)$ and Show that the total area under $R_{12}(\lambda)$ is defined by	$l g_2(t).$
		$\int_{-\infty}^{\infty} R_{12}(\tau) d\tau = \left[\int_{-\infty}^{\infty} g_1(t) dt \right] \left[\int_{-\infty}^{\infty} g_2(t) dt \right]^*.$	[8M]
	(b)	Show that $R_{12}(\lambda) = R_{21}^*(-\lambda)$.	[8M]
7.	(a)	Use geometric evaluation from the pole-zero plot to determine the magnitude of the l transform of the signal whose Laplace transform is specified as $X(s) = \frac{s^2 - s + 1}{s^2 + s + 1}$ $\Re e\{s\} > [6+2=8M]$	Fourier $-(1/2).$
	(b)	Determine the Laplace transform and associated region of convergence	
		And pole-zero plot for the following function of time $x(t)=e^{-2t}u(t)+e^{-3t}u(t)$. [6+	2=8M]
8.	(a)	Find the inverse z transform of $X(z)$ using power series method, given	

 $\begin{array}{l} X(z)=1/[1-az^{-1}], |z|<|a|. \end{array}$ $\begin{array}{l} [8M] \\ (b) \mbox{ Prove that for causal sequences the R.O.C in exterior of circle of some radius 'r'. } \end{array}$