II B.Tech I Semester(RR) Supplementary Examinations, May/June 2010 DISCRETE STRUCTURES AND GRAPH THEORY

(Common to Computer Science \& Engineering, Information Technology, Computer Science \& Systems Engineering and Electronics \& Computer Engineering)

Answer any FIVE Questions
 All Questions carry equal marks

1. Show that the following premises are inconsistent.
(a) if Jack misses many classes through illness, then he fails high school.
(b) If Jack fails high school, then he is uneducated.
(c) If Jack reads a lot of books, then he is not uneducated.
(d) Jack misses many classes through illness and reads a lot of books.
2. (a) Define a poset with an example. Also define glb and lub in a poset. If $\mathrm{A}=\{a, b$ c $\}$ such that $\rho(\mathrm{A})$ is a poset with a partial order \subseteq on M and $\mathrm{B}=\{\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}\}$ find the glb and lub of B . $\quad[8+8]$
(b) Let L be a poset under partial ordering \leq. Let $\mathrm{a}, \mathrm{b} \in \mathrm{L}$, then show that:
i. if a and b have a lub, then this lub is unique.
ii. if a and b have a glb, then this glb is unique.
3. (a) Define the term 'lattice', clearly stating the axioms.
(b) Let C be a collection of sets which are closed ander idtersection and union. Verify whether (C, \cap, \cup) is a lattice.
4. Prove that any 2 simple connected graphs with n vertices, all of degree 2 , are isomorphic.
5. Prove that a connected graph hasea Eufer circuit iff it can be decomposed to a set of elementary cycles that have no edge in common.
6. (a) From the adjacency matrix of a simple digraph, how will you determine whether it is a directed tree? If it is a directed tree, how will you determine its root and terminal nodes.
(b) What is "tree qraversal"? What are the different tree traversal methods? Explain them in brief with suitable examples.
7. (a) Suppose that JNTU has a residence hostel that has 5 single rooms, 5 double rooms, and 3 rooms for 3 students each. In how many ways can 24 students be assigned to the 13 rooms ?
(b) How many ways are there to distribute 10 balls into 6 boxes with at most 4 balls in the first 2 boxes (that is, if $\mathrm{xi}=$ the number of balls in box I , then $\mathrm{x}_{1}+x_{2} \leq=4$)if
i. the balls are indistinguishable ?
ii. The balls are distinguishable ?
8. Solve the recurrence relation $a_{n}-7 a_{n-1}+26 a_{n-2}-24 a_{n-3}=0$ for $\mathrm{n} \geq 2$.
