Code :9ABS301

II B.Tech I Semester(R09) Supplementary Examinations, May 2011 MATHEMATICS-II

(Aeronautical Engineering, Biotechnology, Civil Engineering, Mechanical Engineering) Time: 3 hours Max Marks: 70

Answer any FIVE questions All questions carry equal marks ****

1. (a) Find whether the following equations are consistent, it so solve them. X + Y + 2Z = 4 : 2X - Y + 3Z = 9 : 3X - Y - Z = 2

- (b) Show that the matrix statistics its characteristic equation. Hence find A^{-1} .
- 2. Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 2yz + 2zx 2xy$ to canonical form by an orthogonal transformation and hence find its rank, index, signature and nature.
- (a) Find the Fourier series for $f(x) = e^{-x}in0 < x < 2\pi$ 3.
 - (b) Find the half-range sinc series for the function f(x) = x x
- (a) Show that the Fourier transforms of $e^{\frac{-x^2}{2}}$ is $\sqrt{2\pi}e^{\frac{-x^2}{2}}$ 4.
 - (b) Find the Fourier sine and cosine transform of $f(x) = 2e^{-5x} + 5e^{-2x}$.
- (a) Form the partial differential equation by eliminating the arbitrary function from 5. $f(xy + z^2, x + y + z) = 0.$
 - (b) Find the three possible solutions of the wave equation $\frac{\partial^2 y}{\partial t^2} = \frac{a^2 \partial^2 y}{\partial x^2}$ by the method of separation of variables.
- (a) Find a real root of the equation $xe^x \cos x = 0$ using Newton's -Raphson method. 6.
 - (b) Using Newton's forward interpolation formula, and the given table of values find f(1.4).

A:1.1	1.3	1.5	1.1	1.9
F(x):0.21	0.69	1.25	1.89	2.61

(a) Fit a straight line to the following data. 7.

2	Χ	0	5	10	15	20	25	
	Y	12	15	17	22	24	30	

(b) Given the following table of values of x and y

X:1.0	1.1	1.2	1.3	1.4	1.5	1.6
Y:7.989	8.403	8.781	9.129	9.451	9.750	10.031

Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 1.1

8. Use Runge-Kutta method to evaluate y(0,1) and y(0,2) given that $\frac{dy}{dx} = x + y, y(0) = 1$.

* * * * *

www.firstranker.com