II B.Tech I Semester(R09) Supplementary Examinations, May 2011 MATHEMATICS-II
(Aeronautical Engineering, Biotechnology, Civil Engineering, Mechanical Engineering) Time: 3 hours

Max Marks: 70
Answer any FIVE questions
All questions carry equal marks

* $\star \star \star \star$

1. (a) Find whether the following equations are consistent, it so solve them.
$X+Y+2 Z=4: 2 X-Y+3 Z=9: 3 X-Y-Z=2$
(b) Show that the matrix statistics its characteristic equation. Hence find A^{-1}.

$$
\left[\begin{array}{ccc}
1 & -2 & 2 \\
1 & 2 & 3 \\
0 & -1 & 2
\end{array}\right]
$$

2. Reduce the quadratic form $3 x^{2}+5 y^{2}+3 z^{2}-2 y z+2 z x-2 x y$ to canonical form by an orthogonal transformation and hence find its rank, index, signature and nature.
3. (a) Find the Fourier series for $f(x)=e^{-x} i n 0<x<2 \pi$
(b) Find the half-range sinc series for the function $f(x)=x-x^{2}, 0<x<1$.
4. (a) Show that the Fourier transforms of $e^{\frac{-x^{2}}{2}}$ is $\sqrt{2 \pi} e^{-\frac{a^{2}}{2}}$.
(b) Find the Fourier sine and cosine transform of $f(x)=2 e^{-5 x}+5 e^{-2 x}$.
5. (a) Form the partial differential equation by eliminating the arbitrary function from $f\left(x y+z^{2}, x+y+z\right)=0$.
(b) Find the three possible solutions of the wave equation $\frac{\partial^{2} y}{\partial t^{2}}=\frac{a^{2} \partial^{2} y}{\partial x^{2}}$ by the method of separation of variables.
6. (a) Find a real root of the equation $x e^{x}-\cos x=0$ using Newton's -Raphson method.
(b) Using Newton's forward interpolation formula, and the given table of values find $f(1.4)$.

$\mathrm{X}: 1.1$	1.3	1.5	1.7	1.9
$\mathrm{~F}(\mathrm{x}): 0.21$	0.69	1.25	1.89	2.61

7. (a) Fit a straight line to the following data.

X	0	5	10	15	20	25
Y	12	15	17	22	24	30

(b) Given the following table of values of x and y

$\mathrm{X}: 1.0$	1.1	1.2	1.3	1.4	1.5	1.6
$\mathrm{Y}: 7.989$	8.403	8.781	9.129	9.451	9.750	10.031

Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=1.1$
8. Use Runge-Kutta method to evaluate $\mathrm{y}(0,1)$ and $\mathrm{y}(0.2)$ given that $\frac{d y}{d x}=x+y, y(0)=1$.

