II B.Tech I Semester(R09) Supplementary Examinations, May 2011

MATHEMATICS-III

(Electrical \& Electronics Engineering, Electronics \& Instrumentation Engineering, Electronics \& Control Engineering, Electronics \& Communication Engineering, Electronics \& Computer Engineering)
Time: 3 hours
Answer any FIVE questions
All questions carry equal marks

1. (a) Define Beta function and prove that $\beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$
(b) Prove that:
i. $j_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \sin x$
ii. $j_{-\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \cos \mathrm{x}$
2. (a) State Cauchy Reimann equations. Show that $f(z)=z+2 \bar{z}$ is not analytic anywhere in the complex plane.
(b) Define Harmonic function. Find the regular function. Whose imaginary part is $\mathrm{e}^{x} \sin y$.
3. (a) Find all values of z which satisfy.
i. $e^{z}=-2$
ii. $e^{z}=1+i$
(b) Find all principal values of $\left(\frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}\right)$
4. (a) Integrate $f(z)=x^{2}+i x y$ from $\mathrm{A}(1,1)$ to $\mathrm{B}(2,8)$ along
i. The straight line $A B$.
ii. The curve $C: x=t, y=t^{3}$.
(b) Evaluate using cauchy's theorem $\int \frac{z^{3} e^{-z}}{(z-1)^{3}} d z$
5. (a) Expand $f(z)=\sin z$ in Taylor's series about $z=\frac{\pi}{4}$
(b) State Laurent's theorem, find the Laurent series expansion of the function $f(z)=\frac{z^{2}-6 z-1}{(z-1)(z-3)(z+2)}$
6. (a) Find the residue of $\frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+1\right)}$
(b) Evaluate $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)^{2}}$
7. (a) State Rouche's theorem. Use Rouche's theorem to find the number of zero's of the polynomial $z^{10}-6 z^{7}+3 z^{3}+1 i f|z|<1$
(b) Show that the equation $z^{4}+4(1+i) z+1=0$ has one root in each quadrant.
8. (a) Show that the transformation $w=\frac{1}{z}$ maps a circle to a circle or to a straight line if the former goes through the origin.
(b) Find the bilinear transformation which maps $\infty, i, 0$ in the z -plane in to $-1,-\mathrm{i}, 1$ in the w-plane.
