Code :9ABS302

II B.Tech I Semester(R09) Supplementary Examinations, May 2011 MATHEMATICS-III

(Electrical & Electronics Engineering, Electronics & Instrumentation Engineering, Electronics & Control Engineering, Electronics & Communication Engineering, Electronics

Time: 3 hours

Answer any FIVE questions

& Computer Engineering)

Max Marks: 70

Answer any FIVE questions All questions carry equal marks

- ****
- 1. (a) Define Beta function and prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$
 - (b) Prove that:

i.
$$j_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$$

ii. $j_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$

- 2. (a) State Cauchy Reimann equations. Show that $f(z) = z + 2\overline{z}$ is not analytic anywhere in the complex plane.
 - (b) Define Harmonic function. Find the regular function. Whose imaginary part is $e^x \sin y$.
- 3. (a) Find all values of z which satisfy.
 - i. $e^z = -2$ ii. $e^z = 1 + i$

(b) Find all principal values of $\left(\frac{\sqrt{3}}{2} + \frac{i}{\sqrt{2}}\right)$

- 4. (a) Integrate $f(z) = x^2 + ixy$ from A(1,1) to B(2,8) along
 - i. The straight line AB.
 - ii. The curve C:x=t, $y=t^3$.
 - (b) Evaluate using cauchy's theorem $\int \frac{z^3 e^{-z}}{(z-1)^3} dz$
- 5. (a) Expand $f(z) = \sin z$ in Taylor's series about $z = \frac{\pi}{4}$
 - (b) State Laurent's theorem, find the Laurent series expansion of the function $f(z) = \frac{z^2 6z 1}{(z-1)(z-3)(z+2)}$
- 6. (a) Find the residue of $\frac{z^2 2z}{(z+1)^2(z^2+1)}$
 - (b) Evaluate $\int_0^\infty \frac{dx}{(x^2+a^2)^2}$
- 7. (a) State Rouche's theorem. Use Rouche's theorem to find the number of zero's of the polynomial $z^{10} 6z^7 + 3z^3 + 1if |z| < 1$
 - (b) Show that the equation $z^4 + 4(1+i)z + 1 = 0$ has one root in each quadrant.
- 8. (a) Show that the transformation $w = \frac{1}{z}$ maps a circle to a circle or to a straight line if the former goes through the origin.
 - (b) Find the bilinear transformation which maps $\infty, i, 0$ in the z-plane in to -1, -i, 1 in the w-plane.

www.firstranker.com