

Code: R5100103 R05

B. Tech I Year (R05) Supplementary Examinations, May 2012 **ENGINEERING PHYSICS**

(Common to Civil Engineering & Mechanical Engineering)

Time: 3 hours Max Marks: 80

Answer any FIVE questions All questions carry equal marks

- 1 (a) Define interference of light.
 - (b) Derive an expression for fringe width in interference pattern and show that the fringes are uniformly spaced with relevant ray diagram.
 - (c) Two slits separated by a distance of 0.2 mm are illuminated by a monochromatic light of wavelength 550 nm. Calculate the fringe width on a screen at distance of 1 m from the slits.
- 2 (a) What do you mean by polarization?
 - (b) Distinguish between polarized and unpolarised lights.
 - (c) Discuss the construction and action of Nicol prism.
- 3 (a) What is Meissner effect? Show that superconductors exhibit perfect diamagnetism.
 - (b) Describe Josephson effects.
 - (c) Explain the applications of Josephson effect.
- 4 (a) Explain the following:
 - (i) Life time of an energy level. (ii) Optical pumping process.
 - (b) Explain the need of a cavity resonator in a laser.
 - (c) With the help of suitable diagrams, explain the principle, construction and working of a ruby laser.
- 5 (a) Explain the principle behind the functioning of optical fiber.
 - (b) Derive expression for acceptance angle for an optical fiber. How is it related to numerical aperture?
 - (c) Calculate the numerical aperture and acceptance angle for an optical fiber with core and cladding refractive indices being 1.48 and 1.45 respectively.
- 6 (a) What is primitive cell? How does it different from unit cell?
 - (b) Illustrate the SC, BCC and FCC crystal structures.
 - (c) Derive the expression for density of the crystal in terms of lattice constant.
- 7 (a) What are Miller indices? How are they obtained?
 - (b) Derive expression for interplanar spacing between two adjacent planes of Miller indices (h, k, l) and lattice constant 'a'.
 - (c) Draw the (001) and (120) planes of a cubic cell.
- 8 (a) Write notes on Frenkel and Schottky defects.
 - (b) Derive the expression for energy of formation of vacancy.
