Code: R5100204

B. Tech I Year (R05) Supplementary Examinations, May 2012
 MATHEMATICAL METHODS
 (Common to EEE, ECE, CSE, EIE, BME, IT, E.Con.E, ECC, CSS, \& ICE)

Time: 3 hours
Answer any FIVE questions
All questions carry equal marks
1 (a) Find a root of the equation $x^{3}-4 x-9=0$ using bisection method in four stages.
(b) Find y (1.6) using Newton's forward difference formula from the table.

x	1	1.4	1.8	2.2
Y	3.49	4.82	5.96	6.5

2 (a) Derive normal equations to fit the parabola $y=a+b x+c x^{2}$.
(b) Given that:

X	4.0	4.2	4.4	4.6	4.8	5.0	5.2
$\log (\mathrm{x})$	1.3863	1.4351	1.4816	1.5261	1.5686	1.6094	1.6487

Evaluate $\int_{4}^{5.2} \log x \mathrm{dx}$ by Simpsons $3 / 8$ rule.

4 (a) Determine whether the following equations will have a non-trivial solution. If so solve them.

$$
\begin{array}{cl}
3 x+4 y-z-6 w=0 ; & 2 x+3 y+2 z-3 w=0 \\
2 x+y-14 z-9 w=0 ; & x+3 y+13 z+3 w=0
\end{array}
$$

(b) Solve the tridiagonal system:
$3 x_{1}-x_{2}=4$,
$2 x_{1}-x_{2}+x_{3}=6$,
$2 x_{2}+3 x_{3}+2 x_{4}=11$,
$x_{3}-2 x_{4}=-1$.
By writing the coefficient matrix as a product of lower triangular and upper triangular matrices.

5 (a) Find the Eigen values and the corresponding Eigen vectors of the matrix.
$\left[\begin{array}{ccc}1 & 2 & -2 \\ 1 & 1 & 1 \\ 1 & 3 & -1\end{array}\right]$
(b) Verify Cayley-Hamilton theorem for the matrix
$A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]$

Page 1 of 2

Code: R5100204

6
(a) Prove that the matrix $\frac{1}{3}\left[\begin{array}{ccc}-1 & 2 & -2 \\ -2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$ is orthogonal.
(b) Find the Eigen values and the corresponding Eigen vectors of the matrix.
$\left[\begin{array}{ccc}2-i & 0 & i \\ 0 & 1+i & 0 \\ i & 0 & 2-i\end{array}\right]$
7 (a) Obtain the Fourier series for the function $f(x)=|x|$ in $-\pi<x<\pi$ and deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots \ldots=\frac{\pi^{2}}{8}$.
(b) State and prove shifting property of Fourier transform.

8 (a) Form the partial differential equation by eliminating the arbitrary constants from: $(x-a)^{2}+(y-b)^{2}+z^{2}=r^{2}$.
(b) Solve the partial differential equation $z^{2}\left(p^{2}+q^{2}\right)=x^{2}+y^{2}$.
(c) Find the z - transform of $\sin \alpha k, \quad k \geq 0$.

