Code: R7100204

B. Tech I Year (R07) Supplementary Examinations, May 2012
 MATHEMATICAL METHODS
 (Common to EEE, ECE, ME, CSE, EIE, IT, E.Con.E, ECC, CSS)

Time: 3 hours
Max Marks: 80

> Answer any FIVE questions All questions carry equal marks

1 (a) Show that every square matrix can be expressed as a sum of a symmetric and skew symmetric matrices.
(b) Reduce the matrix $\left[\begin{array}{cccc}0 & 1 & 2 & -2 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1\end{array}\right]$ to normal form and hence find the rank.
(c) If $a+b+c \neq 0$, show that the system of equations $-2 x+y+z=a, x-2 y+z=b, x+y-2 z=c$ has no solution. If $a+b+c=0$, show that it has infinitely many solutions.

2 (a) Prove that the two Eigen vectors corresponding to the two different Eigen values are linearly independent.
(b) Show that the matrix $A=\left[\begin{array}{lll}1 & -2 & 2 \\ 1 & -2 & 3 \\ 0 & -1 & 2\end{array}\right]$ satisfies the characteristic equations. Hence find A^{-1}.

3 (a) Show that the Eigen values of a Hermitian matrix are real.
(b) Find nature of the quadratic form, index and signature of $10 x^{2}+2 y^{2}+5 z^{2}-4 x y-10 x z-6 y z$.

4 (a) Find out the square root of 25 given $x_{0}=2.0, x_{1}=7.0$ using bisection method.
(b) Given $x=1,2,3,4$ and $f(x)=1,2,9,28$ respectively. Find $f(3.5)$ using Lagrange method of $2^{\text {nd }}$ and $3^{\text {rd }}$ order degree polynomial.

5 (a) Fit the curve of the form $y=a e^{b x}$

X	77	100	185	239	285
y	2.4	3.4	7.0	11.1	19.6

(b)

In valuate $\int_{0}^{1} \frac{1}{1+x} d x$.
(i) By trapezoidal rule. (ii) Simpson's $1 / 3$ rule. (iii) Simpson's $3 / 8$ rule taking.

6 (a) Tabulate $\mathrm{y}(0.1), \mathrm{y}(0.2)$ and $\mathrm{y}(0.3)$ using Taylor's series method given that $Y^{\prime}=\mathrm{y}^{2}+\mathrm{x}$ and $y(0)=1$.
(b) Find $\mathrm{y}(0.1)$ and $\mathrm{y}(0.2)$ using Runge-Kutta $4^{\text {th }}$ order formula given that $Y^{\prime}=\mathrm{x}^{2}-\mathrm{y}$ and $\mathrm{y}(0)=1$.

7 (a) Find the Fourier series of the periodic function defined as $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}-\pi, & -\pi<x<0 \\ x, & 0<x<\pi\end{array}\right.$. Hence deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+$ \qquad $=\frac{\pi^{2}}{8}$.
(b) Find the Fourier cosine transform of $\mathrm{f}(\mathrm{x})$ defined by $\mathrm{f}(\mathrm{x})=\frac{1}{1+x^{2}}$ and hence find Fourier sine transform of $\mathrm{f}(\mathrm{x})=\frac{x}{1+x^{2}}$.

8 (a) Form the partial differential equation by eliminating the arbitrary function from $z=y f\left(x^{2}+z^{2}\right)$.
(b) Solve by the method of separation of variables $4 u_{x}+u_{y}=3 u$ given $u=3 e^{-y}-e^{-5 y}$ when $x=0$.

